Cho tam giác ABC . Chứng minh rằng hai đường phan giác của hai góc ngoài tại B và C và đường phân giác trong của góc A cùng đi qua một điểm.
Mọi người giúp em với tí nữa em phải nộp bài luôn rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của hai tia phân giác của góc ngoài tại đỉnh B và góc ngoài tại đỉnh C.
Kẻ KE ⊥ BC, KF ⊥ AC, KD ⊥ AB
Vì K nằm trên phân giác của ∠(CBD) nên:
KD = KE (tính chất tia phân giác) (1)
Vì K nằm trên tia phân giác của ∠(BCF) nên:
KE = KF (tính chất tia phân giác) (2)
Từ (1) và (2) suy ra: KD = KF
Điểm K nằm trong ∠(BAC) cách đều 2 cạnh AB và AC nên K nằm trên tia phân giác của ∠(BAC) .
Gọi K là giao điểm của hai đường phân giác góc ngoài tại B và C
Kẻ KE,KD,KF vuông góc lần lượt với BC,AB,AC
Xét ΔBDK vuông tại D và ΔBEK vuông tại E có
KB chung
\(\widehat{DBK}=\widehat{EBK}\)
Do đó: ΔBDK=ΔBEK
Suy ra: KD=KE(1)
Xét ΔCEK vuông tại E và ΔCFK vuông tại F có
CK chung
\(\widehat{ECK}=\widehat{FCK}\)
Do đó;ΔCEK=ΔCFK
Suy ra: KE=KF(2)
Từ (1) và (2) suy ra KD=KF
hay K nằm trên đường phân giác của góc A(Đpcm)
Tự Vẽ Hình Nhé :
Theo tính chất đường phân giác ngoài của một góc luôn vuông góc với đường phân giác ngoài của góc đó
=> \(\widehat{MBN}=\widehat{MCN}=90^0\)nên hai góc \(\widehat{MBN}\)và \(\widehat{MCN}\)cùng nhìn MN dưới một góc bằng 90 độ. vậy Tứ giác MBNC nội tiếp đường tròn đường kính MN
mk ko có bít làm sao jờ ?
?????????????????
Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp
Vẽ hình ra luôn
bài này làm sao vậy khó quá bạn vào giúp mình giải với mình k xem đc trả lời của bài này
Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá
HD
Câu 1.
Tự CM.
Câu 2:
Kẻ AO cắt đường tròn tại F
Để ý góc ADE=góc EBC=góc AFC
Mà góc CAF+góc FAC =90°
⇒góc ADE+góc FAC =90°hay AF ⊥ DE.
Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.
Câu 3:
Gọi giao CQ và BP là O’
Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)
⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’
⇒ các ΔBQN, ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C
⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi