Tính:
1/2+1/6+1/12+...+1/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/6+1/12+1/20+1/30+...+1/90=
1/1*2+1/2*3+1/3*4+...+1/9*10=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10=
1/1-1/10=9/10 ban a
1/2+1/6+1/12+1/20+1/30+...+1/90
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+...+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/9-1/10
=1-1/10
=9/10
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+......+\(\frac{1}{9.10}\)
A=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+........+\(\frac{1}{9}\)-\(\frac{1}{10}\)
A=1-\(\frac{1}{10}\)=9/10
sau đây là phần chữa của mình:
\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\)
= \(\dfrac{3}{10}\)
= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{2}-\dfrac{1}{10}\)
= \(\dfrac{2}{5}\)
A = \(3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{5}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{90}\)
A = \(\frac{29}{90}\)
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + ...... + 1/9x10
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4-1/5 +.......+ 1/9 -1/10
= 1/1 - 1/10
= 9/10
=1/1.2+1/2.3+1/3.4+................1/9.10
=1-1/2-1/2-1/3+...................+1/9-1/10
=1-1/10
=9/10