K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

28 tháng 12 2021

a: Xét (I) có

ΔHMB nội tiếp

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét (K) có

ΔCNH nội tiếp

HC là đường kính

Do đó; ΔCNH vuông tại N

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

b: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>NM là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc HBA+góc HAB=90 độ

=>MN là tiếp tuyến của (K)

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

29 tháng 12 2017

A C B H O D E M N

a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)

Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.

Vậy D, O, E thẳng hàng.

b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)

Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.

Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.

Tương tự N là trung điểm HC.

c) Dễ thấy MDEN là hình thang vuông.

Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)

\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)

\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)

BÀI TẬP 18Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lầnlượt tại E và F. Biết AB=6cm , BC =10 cma) Tính AC , AHb) Chứng minh tứ giác AEHF là hình chữ nhậtc) Chứng minh AE.AB = AF. ACd) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)BÀI TẬP 19Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn...
Đọc tiếp

BÀI TẬP 18
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lần
lượt tại E và F. Biết AB=6cm , BC =10 cm
a) Tính AC , AH
b) Chứng minh tứ giác AEHF là hình chữ nhật
c) Chứng minh AE.AB = AF. AC
d) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)
BÀI TẬP 19
Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn 45o. Vẽ dây
cung MN ⊥ AB. Tia BM cắt tia NA tại P. Gọi Q là điểm đối xứng với P qua đường thẳng AB. Gọi K là
giao điểm của PQ với AB.
1) Chứng minh các điểm P, K, A, M cùng thuộc một đường tròn.
2) Chứng minh ∆PKM cân.
3) Chứng minh KM là tiếp tuyến của (O).
4) Xác định vị trí của điểm M trên đường tròn (O) để tứ giác PKNM là hình thoi.
BÀI TẬP 20
Cho đường tròn (O; R), đường kính AB. Trên tiếp tuyến tại A của đường tròn (O) lấy điểm C sao cho
AC = 2R. Gọi D là giao điểm của BC với đường tròn (O).
1) Chứng minh: AD là trung tuyến của ∆ABC.
2) Vẽ dây cung AE ⊥ OC tại H. Chứng minh: CE là tiếp tuyến của đường tròn (O).
3) Đường thẳng BE cắt đường thẳng OD tại F. Tính số đo của góc OFB.
4) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Chứng minh: ME = MK.
Giúp mình với ạ. Mình đang cần gấp. Cảm ơn ạ

0

a: góc AEH=1/2*180=90 độ

=>HE vuông góc AB

góc AFH=1/2*180=90 độ

=>HF vuông góc AC

Vì góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AEHF làhình chữ nhật

=>góc AFE=góc AHE=góc B

=>góc B+góc FCB=180 độ

=>BEFC nội tiếp

a: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB

=>AE/AC=AF/AB

=>ΔAEF đồng dạng vơi ΔACB