K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

a) |x|=x

x thuộc Z và z khác 0

b) |x-2012|-1=0

\(\orbr{\begin{cases}\left|x-2012\right|=1\\\left|x-2012\right|=-1\end{cases}}\)

\(\orbr{\begin{cases}x=2013\\x=2011\end{cases}}\)

5 tháng 3 2017

a) x \(\in\)N

b) x= 2011

22 tháng 2 2015

\(10A=\frac{2012^{2013}+10}{2012^{2013}+1}=\frac{2012^{2013}+1+9}{2012^{2013}+1}=1+\frac{9}{2012^{2013}+1}\)

\(10B=\frac{2012^{2012}+10}{2012^{2012}+1}=\frac{2012^{2012}+1+9}{2012^{2012}+1}=1+\frac{9}{2012^{2012}+1}\)

Vì \(\frac{9}{2012^{2013}+1}

8 tháng 4 2018

ta co A=\(\frac{2012^{2012}+1}{2012^{2013}+1}< \frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)=\(\frac{2012^{2012}+2012}{2012^{2013}+2012}=\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)

           =>A<B

28 tháng 9 2017

Bài :1

\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)

\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow P>Q\)

28 tháng 9 2017

cậu thích conan à

15 tháng 3 2018

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q 

Vậy P > Q

b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b

\(\Rightarrow a.b=420.21=8820\)

Ta có:

\(ab=8820\)

\(a+21=b\Rightarrow b-a=21\)

Hai số cách nhau 21 mà có tích là 8820 là 84 , 105

Mà a + 21 = b suy ra a < b

Vậy a = 84 ; b = 105

15 tháng 3 2018

a,-Cách khác:

-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)

\(\Rightarrow P>Q\)

a) Tìm x

\(6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{\left(-2\right)^{2012}}\Rightarrow6-\left(x-\frac{1}{3}\right)^2=\frac{2^{2013}}{2^{2012}}=2^1=2\)

\(\Rightarrow\left(x-\frac{1}{3}\right)^2=6-2=4=2^2\Rightarrow\hept{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{3}\\x=\frac{-5}{3}\end{cases}}}\)

Vậy \(x\in\left\{\frac{7}{3};\frac{-5}{3}\right\}\)

b) Ta có : \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\) và \(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\\\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\end{cases}}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{a+b-c}{21+14-10}=-\frac{50}{25}=-2\)

\(\Rightarrow a=\left(-2\right).21=-42\)     \(b=\left(-2\right).14=-28\)     \(c=\left(-2\right).5=-10\)

Vậy a = -42 ; b = -28 và c = -10

   

15 tháng 3 2015

Ta thấy :A = 1+2012+20122+20123+...+201272

=> 2012A = (1+2012+20122+20123+...+201272)*2012

=> 2012A = 2012+20122+20123+20124+...+201272+20122013

=> 2012A = (1+2012+20122+20123+...+201272)+201273-1

=> 2012A = A+201273-1

=> 2011A = 201273-1

=> A = (201273-1) : 2011

Mà [(201273-1) : 2011]  (201273-1)

=> A < B

24 tháng 4 2015

 2012A = (1+2012+20122+20123+...+201272).2012

=> 2012A = 2012+20122+20123+20124+...+201272+20122013

=> 2012A = (1+2012+20122+20123+...+201272)+201273-1

=> 2012A = A+201273-1

=> 2011A = 201273-1

=> A = (201273-1) : 2011

Mà [(201273-1) : 2011]  < (201273-1)

=> A < B

NV
18 tháng 2 2022

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)