Học sinh khối 6 của một trường đi học tập trải nghiệm ngoài nhà trường bằng ô tô. Nếu mỗi xe xếp 16 em hay 29 em đều vừa đủ. Biết số học sinh trường đó trong khoảng từ 800 đến 1000 em. Số học sinh tham gia trải nghiệm là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh đi tham quan là \(x\)\(\left(700\le x\le800,x\inℕ^∗\right)\)
Nếu xếp 40 hay 45 em vào một xe đều vừa đủ nên không thay đổi . Do đó ta có :
\(x⋮40,x⋮45\)và \(700\le x\le800\)
=> \(x\in BC\left(40,45\right)\)
Phân tích ra thừa số nguyên tố :
40 = 23 . 5
45 = 32 . 5
=> \(BCNN\left(40,45\right)=2^3\cdot3^2\cdot5=360\)
=> \(BC\left(40,45\right)=B\left(360\right)=\left\{0;360;720;1080;...\right\}\)
Mà \(700\le x\le800\)và \(x\inℕ^∗\)nên loại x = 0
Do đó x = 720(tm)
Vậy có 720 học sinh đi tham quan
Gọi \(x\) (học sinh) là số học sinh cần tìm (\(x\in N\)* và \(700< x< 1200\))
Do khi xếp 40 em hay 45 em vào 1 xe thì đều thiếu 5 em nên \(\left(x+5\right)⋮40;\left(x+5\right)⋮45\)
\(\Rightarrow x+5\in BC\left(40;45\right)\)
Do khi xếp 43 em lên xe thì vừa đủ nên \(x⋮43\)
Ta có:
\(40=2^3.5\)
\(45=3^2.5\)
\(\Rightarrow BCNN\left(40;45\right)=2^3.3^2.5=360\)
Do \(x\in N\)* \(\Rightarrow x+5>0\)
\(\Rightarrow x+5\in BC\left(40;45\right)=B\left(360\right)=\left\{360;720;1080;1440;...\right\}\)
\(\Rightarrow x\in\left\{355;715;1075;1435;...\right\}\)
Mà \(700< x< 1200\) và \(x⋮43\)
\(\Rightarrow x=1075\)
Vậy số học sinh cần tìm là 1075 học sinh
Gọi số học sinh là \(n\)(học sinh) \(n\inℕ^∗\).
Vì khi xếp mỗi ô tô có \(20\)học sinh hoặc \(25\)học sinh hoặc \(30\)học sinh đều thừa ra \(15\)học sinh nên \(n\)chia cho \(20,25,30\)đều có số dư là \(15\).
suy ra \(n-15\)chia hết cho cả \(20,25,30\)
\(\Rightarrow n-15\in B\left(20,25,30\right)\)
Phân tích thành tích các thừa số nguyên tố: \(20=2^2.5,25=5^2,30=2.3.5\)
suy ra \(BCNN\left(20,25,30\right)=2^2.3.5^2=300\)
\(\Rightarrow n-15\in B\left(300\right)=\left\{300,600,900,1200,...\right\}\)
mà số học sinh chưa đến \(1000\)nên \(n-15\in\left\{300,600,900\right\}\)
\(\Leftrightarrow n\in\left\{315,615,915\right\}\).
Mà xếp mỗi ô tô \(41\)học sinh thì vừa đủ nên \(n⋮41\).
Thử trực tiếp chỉ có \(n=615\)thỏa mãn.
Vậy số học sinh của trường là \(615\)học sinh.
Gọi số học sinh là x
Theo đề, ta có: \(x\in BC\left(16;29\right)\)
hay x=928