cho tam giác ABC. Vẽ AM là trung tuyến của BC. Chứng minh AM<AB+AC/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:BM=CM=BC2BC2=102102=5(cm)
Vì AM là trung tuyến
=>AM là đường cao
Xét ΔABM vuông tại M có:
AB2=AM2+MB2(định lý pytago)
Hay:132=AM2+52
169=AM2+25
AM2=√144144
AM=12(cm)
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=2323MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
a) Xét ΔABE và ΔCKE có
EB=EK(gt)
\(\widehat{AEB}=\widehat{CEK}\)(hai góc đối đỉnh)
EA=EC(E là trung điểm của AC)
Do đó: ΔABE=ΔCKE(c-g-c)
b) Xét ΔAME vuông tại M và ΔCNE vuông tại N có
EA=EC(E là trung điểm của AC)
\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)
Do đó: ΔAME=ΔCNE(Cạnh huyền-góc nhọn)
Suy ra: AM=CN(hai cạnh tương ứng)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Xét tứ giác AMCI có
AM//CI
AI//MC
Do đó: AMCI là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCI là hình chữ nhật
Suy ra: AC=MI
c: Ta có: AMCI là hình chữ nhật
nên AI=MC
mà MC=MB
nên AI=MB
Xét tứ giác ABMI có
AI//MB
AI=MB
Do đó: ABMI là hình bình hành
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC