tính nhanh
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+....................+\frac{5^2}{20.31}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)
Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)
Q=5(1/1-1/31)
Q=5x30/31
Q=150/31
\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
CÒN ĐÔU PN TỰ LÀM NHA
\(b\)) \(Q=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
\(a\)) Mình giải theo cách khác:
Chú ý rằng : \(\frac{3}{2.5}=\frac{1}{2}-\frac{1}{5};\frac{3}{5.8}=\frac{1}{5}-\frac{1}{8};\frac{3}{8.11}=\frac{1}{8}-\frac{1}{11};...;\frac{3}{17.20}=\frac{1}{17}-\frac{1}{20}\)
Do đó: \(P=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
Ta có:
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}\)
Vậy \(A=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{5.30}{31}=\frac{150}{31}\)
A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+....+\(\frac{5^2}{26.31}\)=\(\frac{25}{1.6}\)+\(\frac{25}{6.11}\)+.....+\(\frac{25}{26.31}\)
\(\frac{1}{5}\)A=\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+....+\(\frac{5}{26.31}\)=1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+....+\(\frac{1}{26}\)-\(\frac{1}{31}\)=1-\(\frac{1}{31}\)=\(\frac{30}{31}\)
A=\(\frac{30}{31}\):\(\frac{1}{5}\)
A=\(\frac{150}{31}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)