Giả sử p là số nguyên tố lẻ và m = 9p - 1/8.CMR: m là hợp số lẻ không chia hết cho 3 và 3^m - 1 chia cho m dư 1.
Mình mong được các cao nhân tận tình giúp đỡ ạ!
Mình cảm ơn ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\) Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho \(m\) nên \(m\) không chia hết cho \(3.\)
Cuối cùng, \(m-1=\frac{9^p-9}{8}\). Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)
chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho \(2p.\) Suy ra \(3^{m-1}-1\) chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)
Gọi a=ƯC(m,mn+8)
Ta có: m chia hết cho a(m lẻ => a lẻ)
=> mn chia hết cho a.
Lạ có: mn+8 chia hết cho a.
=> mn+8-mn chia hết cho a
=> 8 chia hết cho a.
=> a\(\in\)Ư(8)={1,2,4,8}
Vì a lẻ.
=> a=1
=> ƯC(m,mn+8)=1
=> m và mn+8 là 2 số nguyên tố cùng nhau.
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
bn vào olm.vn ik trong đấy có câu trả lời đấy!
gợi ý cho bn r đó nha !
nhớ like cho mik đấy!
Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)
Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số
Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)
Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)
Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)
Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)