K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$

Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$

$\Rightarrow x^2+1\vdots d; x+1\vdots d$

$\Rightarrow x(x+1)-(x^2+1)\vdots d$

$\Rightarrow x-1\vdots d$

$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)

$\Rightarrow d=1$

Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.

Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$

$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$

$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$

$\Rightarrow a=b=1$

$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......

15 tháng 6 2022

\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)

\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)

\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)

\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)

đến đây giải hơi bị khổ =))