K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

16 tháng 3 2022

bạn có thể giúp mk giải theo kiểu tự luận đc ko ạ

 

8 tháng 1 2021

phương trình hoành độ giao điểm của f(x) với y = -1 là

x4 - (3m + 2)x2 + 3m = -1

⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)

Đặt x2 = t (ĐK : t ≥ 0)

Phương trình trở thành 

t2 - (3m + 2)t + 3m + 1 = 0 (2)

Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4

⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)

⇒ \(\dfrac{-1}{3}< m< 1\) 

Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)

Hình như 0 k lấy 

13 tháng 3 2021

\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)

TH1: \(m=2\)

Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m>2\)

\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)

\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán

TH3: \(m< 2\)

+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)

\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)

Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán

+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Vậy \(S=(-\infty;1]\)

Không biết đúng chưa, bài này phức tạp quá.

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

24 tháng 6 2017

Phân thức đại số