giải pt: \(3^x+2^x=3x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
=>\(\dfrac{x^2-3x+6-x^2+3x-6}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)
=>căn x^2-3x+6-căn x^2-3x+3=1
Đặt x^2-3x+3=a
=>căn a+3-căn a=1
=>a+3+a-2căn a^2+3a=1
=>2*căn (a^2+3a)=2a+3-1=2a+2
=>căn a^2+3a=a+1
=>a^2+3a=a^2+2a+1
=>a=1
=>x^2-3x+2=0
=>x=1 hoặc x=2
Đặt x/(x^2-3x+3) = t ta được
\(3t-2t=1\Leftrightarrow t=1\)
Theo cách đặt \(x=x^2-3x+3\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow x=3;x=1\)
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
\(x.\left(x+3\right)^2-3x=\left(x+2\right)^3+1\)\(1\)
\(\Rightarrow x\left(x2+6x+9\right)-3x=x3+12x+6x2+8+1\)
\(\Rightarrow x3+6x2+9x-3x=x3+12x+6x2+9\)
\(\Rightarrow x3+6x2+9x-3x-x3-12x-6x2-9=0\)
\(\Rightarrow-6x-9=0\)
\(\Rightarrow-6x=9\)
\(\Rightarrow x=\frac{-9}{6}=\frac{-3}{2}\)
Vậy pt nhận x = -3 / 2 làm nghiệm duy nất
𝑥=1
\(PT\Leftrightarrow3^x+2^x-3x-2=0\left(1\right)\)
Ta thấy \(x=0;x=1\) là nghiệm của \(\left(1\right)\)
Xét hàm \(f\left(x\right)=3^x+2^x-3x-2,x\in R\\ f'\left(x\right)=3^x\ln3+2^x\ln2-3\\ f''\left(x\right)=3^x\ln^23+2^x\ln^22>0,\forall x\)
Bề lõm của \(f\left(x\right)\) luôn hướng về \(y>0\) nên đồ thị ko thể cắt trục hoành tại nhiều hơn 2 điểm
Vậy nghiệm PT là \(x=0;x=1\)