Cho f(x) = ax^2 + bx +c . Chứng minh rằng không có số nguyên a,b,c nào làm cho f(x) =1 khi x = 1998 và
f(x) = 2 khi x = 2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên a,b,c thỏa mãn đề bài
Ta có:\(\hept{\begin{cases}f\left(1998\right)=1998^2a+1998b+c=1\\f\left(2000\right)=2000^2a+2000b+c=2\end{cases}}\)
\(\Rightarrow f\left(2000\right)-f\left(1998\right)=\left(2000^2a+2000b+c\right)-\left(1998^2a+1998b+c\right)=2-1\)
\(\Leftrightarrow\left(2000^2-1998^2\right)a+2b=1\)
Ta thấy 1 là số lẻ mà 2b và (2000^2-1998^2)a là số chẵn nên 2b+(2000^2-1998^2)a là số chắn(Vô lý)
Vậy ko tồn tại các số nguyên a,b,c thỏa mãn đề bài(đpcm)