Cho tam giác ABC vuông ở A, tia phân giác của góc C cắt AB tại P. So sánh PA và PB
nhanh nha các bạn mk đang cần gấp!!?
có hình thì vẽ lun nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trên cạnh AC lấy điểm E sao cho AE = AB.
Ta có: AB < AC nên AE < AC
Suy ra E nằm giữa A và C.
Xét ΔABD và ΔAED, ta có:
AB = AE (theo cách vẽ)
∠(BAD) = ∠(EAD) (gt)
AD cạnh chung
Suy ra: ΔABD = ΔAED (c.g.c)
Suy ra: BD = DE (2 cạnh tương ứng)
và ∠(ABD) = ∠(AED) (2 góc tương ứng)
Mà: ∠(ABD) + ∠B1= 180o (2 góc kề bù)
∠(AED) + ∠E1= 180o (2 góc kề bù)
Suy ra: ∠B1= ∠E1
Trong ΔABC ta có ∠B1là góc ngoài tại đỉnh B
Ta có: ∠B1 > ∠C (tính chất góc ngoài của tam giác)
Suy ra: ∠E1> ∠C
Suy ra: DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)
Vậy BD < DC.
Trên cạnh AC lấy điểm E sao cho AE = AB
AB < AC nên AE < AC => E nằm giữa A và C
Xét ∆ABD và ∆AED:
AB = AE (theo cách vẽ)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD cạnh chung
Do đó: ∆ABD = ∆AED (c.g.c)
=> BD = DE (2 cạnh tương ứng)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)(2 góc tương ứng)
\(\widehat{ABD}+\widehat{B_1}=180^0\)(2 góc kề bù)
\(\widehat{AED}+\widehat{E1}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}\)
Trong ∆ABC ta có\(\widehat{B_1}\)là góc ngoài tại đỉnh B.
\(\Rightarrow\widehat{B_1}>\widehat{C}\)(tính chất góc ngoài tam giác)
\(\Rightarrow\widehat{E_1}>\widehat{C}\)
Trong ∆DEC ta có:\(\widehat{E_1}>\widehat{C}\)
=>DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)
Suy ra: BD < DC
Bài 1:
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
a:
ΔABC vuông tại A nên BC là cạnh lớn nhất
=>AC<BC
mà AB<AC
nên AB<AC<BC
Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ACB}< \widehat{ACB}\)
nên \(\widehat{ICB}< \widehat{IBC}\)
Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)
mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC
nên IB<IC
Theo hình thì CA sẽ là đường vuông góc
=> CP, CB là đường xiên của đường chiếu BP và PA
Mà CB > Cp
=> BP > PA ( híc ko biết có đúng ko nữa)