K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

AH
Akai Haruma
Giáo viên
20 tháng 6 2021

Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$y^2+2^2\geq 4y$

$2(x^2+y^2)\geq 4xy$

$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$

$\Rightarrow x^2+y^2\geq 8$

Vậy $P_{\min}=8$ khi $x=y=2$

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

24 tháng 7 2023

\(a.2x\left(x-1\right)-3\left(x^2+4x\right)+x\left(x+2\right)\) 

\(=2x^2-2x-3x^2-12x+x^2+2x\) 

\(=-12x\) 

\(b.\left(2x-3\right)\left(3x+5\right)-\left(x-1\right)\left(6x+2\right)+3-5x\) 

\(=6x+10x-9x^2-15-6x^2-2x-6x-2+3-5x\) 

\(=-15x^2+3x-14\) 

\(c.\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-y^2\right)\) 

\(=x^3-y^3-x^3+y^3+x^2y-y^3\)

\(=y^3+x^2y\)