cho tam giác ABC có AB<AC. từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A cắt tia này tại H, cắt AC tại F. vẽ BM//EF
Chứng minh rằng: a> tam giác ABM cân
b> MF=BE=CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
nên AB=AC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
c: Ta có: ΔABM=ΔACN
nên AM=AN
hay ΔAMN cân tại A
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
a: Xét ΔABM và ΔACM có
AB=AC
BM=Cm
AM chung
=>ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: BM=CM=5cm
=>AM=12cm
=>AG=8cm
ok, thanks nhưng dừng khoảng chừng là 2 giây, you lấy từ qanda
vì tam giác ABC cân-> AB=AC
do M là trung điểm của BC-> MB=MC
xét tam giác ABM và tam giác ACM có:
AB=AC(cmt)
BM=MC(cmt)
cạnh AM chung
->tam giác ABM=tam giác ACM(c.c.c)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân)
\(\widehat{ABM}=\widehat{ACM}\)(\(\Delta ABC\) cân)
BM = CM (trung điểm M)
\(\Rightarrow\Delta ABM=\Delta ACM\)