AE help mình vs!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + 2x + y = 11
<=> x(y + 2) + y + 2 = 13
<=> (x + 1)(y + 2) = 13
Lập bảng xét các trường hợp
x + 1 | 1 | 13 | -1 | -13 |
y + 2 | 13 | 1 | -13 | -1 |
x | 0 | 12 | -2 | -14 |
y | 11 | -1 | -15 | -3 |
Vậy các cặp (x;y) thỏa là (0;11) ; (12 - 1) ; (-2;-15) ; (-14 ; -3)
Áp dụng BĐT Bunhiacopxki (cho tất cả các bài):
1.
\(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)=25\)
\(\Rightarrow\left|3x+4y\right|\le5\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)
2.
\(\left(x+2y\right)^2=\left(1.x+\sqrt{2}.\sqrt{2y}\right)^2\le\left(1+2\right)\left(x^2+2y^2\right)=3\)
\(\Rightarrow\left|x+2y\right|\le\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{\sqrt{3}};\dfrac{1}{\sqrt{3}}\right)\)
4.
a.
Áp dụng Bunhiacopxki:
\(\left(b+c+c+a+a+b\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow2\left(a+b+c\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(ZnO,BaO,K_2O\)
\(ZnCl_2,BaCl_2,KCl\)
\(Zn\left(OH\right)_2,Ba\left(OH\right)_2,KOH\)
\(ZnSO_4,BaSO_4,K_2SO_4\)
\(Zn\left(NO_3\right)_2,Ba\left(NO_3\right)_2,KNO_3\)
\(ZnCO_3,BaCO_3,K_2CO_3\)
\(Zn_3\left(PO_4\right)_2,Ba_3\left(PO_4\right)_2,K_3PO_4\)
Answer:
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3)(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3\left(x+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\sqrt{x}+3}:\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)