Có tam giác ABC vuông tại A ( góc A = 90 độ ).
Chứng Minh rằng: Nếu M là trung điểm của BC thì Ma=MB=MC.
P/s: Ghi cách làm rõ ràng. Có hình càng tốt
MÌNH ĐANG CẦN GẤP CÁC BẠN NHANH NHANH TÍ NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A có AM là đường trung tuyến (vì M là trung điểm BC)
=> MA = 1/2 BC (đường trung tuyến ứng với cạnh huyền thì = 1/2 cạnh huyền)
Mà MB = MC = 1/2 BC
=> MA = MB = MC
a) Vì ΔABMΔABM vuông cân tại A(gt)A(gt)
=> AM=ABAM=AB (tính chất tam giác vuông cân).
Vì ΔACNΔACN vuông cân tại A(gt)A(gt)
=> AC=ANAC=AN (tính chất tam giác vuông cân).
Ta có: A2ˆ=A3ˆ=900(gt)A2^=A3^=900(gt)
=> A1ˆ+A2ˆ=A1ˆ+A3ˆA1^+A2^=A1^+A3^
=> MACˆ=NABˆ.MAC^=NAB^.
Xét 2 ΔΔ AMCAMC và ABNABN có:
AM=AB(cmt)AM=AB(cmt)
MACˆ=NABˆ(cmt)MAC^=NAB^(cmt)
AC=AN(cmt)AC=AN(cmt)
=> ΔAMC=ΔABN(c−g−c).ΔAMC=ΔABN(c−g−c).
b) Theo câu a) ta có ΔAMC=ΔABN.ΔAMC=ΔABN.
=> ACMˆ=ANBˆACM^=ANB^ (2 góc tương ứng).
Hay ACMˆ=ANIˆ.ACM^=ANI^.
Lại có: AINˆ=CIKˆAIN^=CIK^ (vì 2 góc đối đỉnh).
Vì ΔANIΔANI vuông tại A(gt)A(gt)
=> ANIˆ+AINˆ=900ANI^+AIN^=900 (tính chất tam giác vuông).
Mà {ACMˆ=ANIˆ(cmt)AINˆ=CIKˆ(cmt){ACM^=ANI^(cmt)AIN^=CIK^(cmt)
=> ACMˆ+CIKˆ=900.ACM^+CIK^=900.
Xét ΔKICΔKIC có:
IKCˆ+ACMˆ+CIKˆ=1800IKC^+ACM^+CIK^=1800 (vì 2 góc đối đỉnh).
=> IKCˆ+900=1800IKC^+900=1800
=> IKCˆ=900.IKC^=900.
=> IK⊥CK.IK⊥CK.
Hay BN⊥CM.BN⊥CM.
bn k mik nha
a) Thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>\(\widehat{MAC}=\widehat{BAN}\)
=>\(\Delta MAC=\Delta BAN\left(c-g-c\right)\Rightarrow MC=BN\)
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: \(\widehat{DBA}=\widehat{DMA}\left(\Delta MAC=\Delta BAN\left(c-g-c\right)\right)\)
Nên \(\widehat{MBD}+\widehat{BMD}=\widehat{MBA}+\widehat{DBA}+\widehat{BMD}=\widehat{MBA}+\widehat{DMA}+\widehat{BMD}=\widehat{MBA}\)
\(+\widehat{BMA}=90^o\)
Xét t/g MBD có \(\widehat{MBD}+\widehat{BMD}=90^o\Rightarrow\widehat{BMD}=90^o\)
\(\Rightarrow BN\perp MC\)
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=\(4\sqrt{2}\left(cm\right)\)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>\(\widehat{AMC}=\widehat{ACM}\)= (180o-150o):2=15o
Thì \(\widehat{MCB}=\widehat{ACB}-\widehat{ACM}=60^o-15^o=45^o\)
Lại có \(\widehat{MAN}=360^o-90^o-60^o-90^o=120^o\)
Vì t/gMAN cân tại A nên \(\widehat{AMN}\)= (180o-120o) : 2 =30o
=> \(\widehat{CNM}=30^o+15^o=45^o\)
=>\(\widehat{CNM}=\widehat{MCB}\)
=> BC//MN ( so le trong)
đpcm.
Ta có M là trung điểm BC và MB = MC = MA (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền BC và = 1/2 BC
Mà cái này chỉ có trong tam giác vuông
=> tam giác ABC vuông tại A
1:
a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có
AB=CA
góc ABD=góc CAE
=>ΔABD=ΔCAE
b: ΔABD=ΔCAE
=>BD=AE: AD=CE
=>BD-CE=BD-AD=DE
*bạn tự vẽ hình nhé
a) Xét Δ AMB và Δ DMC có :
BM = CM (gt)
AM = DM (gt)
góc M1 = M2 ( 2 góc đối đỉnh )
=> ΔAMB = ΔDMC (c-g-c)
=> góc MBA = góc MCD ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
Xét ΔABC có: AB=AC(gt)
=> ΔABC cân tại A
=>^B=^C
Xét ΔAMB và ΔAMC có:
AB=AC(gt)
^B=^C(cmt)
MB=MC(gt)
=> ΔAMB =ΔAMC( c.g.c)
=> ^AMB=^AMC
Mà ^AMB+^AMC=180( cặp góc kề bù)
=> ^AMB=^AMC=90
=>AM\(\perp\) BC
tam giác abc vuông tại a ==>bc là cạnh huyền
vì M là tđ của bc==>am là trung tuyến==>ma=mb=mc(trung tuyến bằng 1/2 cạnh huyền)==ĐPCM