K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Câu 1: \(S\le P\)

a: Thay x=2 và y=y vào hệ, ta được:

my+2=2 và 2m-2y=1

=>my=0 và 2m-2y=1

=>\(m\in\varnothing\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(-m^2-2\right)=1-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=2-\dfrac{2m^2-m}{m^2+2}=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\end{matrix}\right.\)

Để \(S=2x-y=\dfrac{2m+8-2m+1}{m^2+2}=\dfrac{7}{m^2+2}_{MAX}\) thì m^2+2 min

=>m=0

20 tháng 3 2018

Ta có  x + 2 y = 2 m x − y = m

⇔ x = 2 − 2 y m 2 − 2 y − y = m ⇔ x = 2 − 2 y 2 m + 1 y = m

Để phương trình có nghiệm duy nhất thì  m ≠ - 1 2

Suy ra  y = m 2 m + 1 ⇒ x = 2 − 2. m 2 m + 1 ⇒ x = 2 m + 2 2 m + 1

Vậy hệ có nghiệm duy nhất  x = 2 m + 2 2 m + 1 y = m 2 m + 1

Để  x > 1 y > 0

⇔ 2 m + 2 2 m + 1 > 1 m 2 m + 1 > 0 ⇔ 1 2 m + 1 > 0 m 2 m + 1 > 0 ⇔ 2 m + 1 > 0 m > 0 ⇔ m > − 1 2 m > 0 ⇒ m > 0

Kết hợp điều kiện m ≠ - 1 2 ta có m > 0

Đáp án: A

16 tháng 12 2023

a: Khi m=-1 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}x\cdot2\cdot\left(-1\right)-3y=2\cdot\left(-1\right)-1\\4x-\left(-1+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x-3y=-3\\4x-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-4x-6y=-6\\4x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6y-4y=-6+2\\x-y=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-10y=-4\\x-y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{5}\\x=\dfrac{1}{2}+\dfrac{2}{5}=\dfrac{9}{10}\end{matrix}\right.\)

b: Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2m}{4}\ne-\dfrac{3}{-\left(m+5\right)}\)

=>\(\dfrac{m}{2}\ne\dfrac{3}{m+5}\)

=>\(m^2+5m\ne6\)

=>\(m^2+5m-6\ne0\)

=>\(\left(m+6\right)\left(m-1\right)\ne0\)

=>\(m\notin\left\{-6;1\right\}\)

c: \(\left\{{}\begin{matrix}2mx-3y=2m-1\\4x-\left(m+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4mx-6y=4m-2\\4mx-\left(m^2+5m\right)y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-6y+\left(m^2+5m\right)y=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2+5m-6\right)=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)(1)

Khi \(m\notin\left\{-6;1\right\}\) thì hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}y=\dfrac{2m-2}{m^2+5m-6}=\dfrac{2\left(m-1\right)}{\left(m+6\right)\left(m-1\right)}=\dfrac{2}{m+6}\\4x=2+\left(m+5\right)y=2+\dfrac{2m+10}{m+6}=\dfrac{4m+22}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{2}{m+6}\\x=\dfrac{4m+22}{4m+24}=\dfrac{2m+11}{2m+12}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\\dfrac{2}{m+6}>0\\\dfrac{2m+11}{2m+12}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\m+6>0\\\dfrac{2m+11}{m+6}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}\left\{{}\begin{matrix}2m+11>0\\m+6>0\end{matrix}\right.\\\left\{{}\begin{matrix}2m+11< 0\\m+6< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}m>-\dfrac{11}{2}\\m< -6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}m\ne1\\m>-\dfrac{11}{2}\end{matrix}\right.\)

4 tháng 5 2019

x + y = 2 m x − y = m ⇒ x + mx = 2 + m ⇒ x (m + 1) = m + 2.

Nếu m = −1 ⇒ 0x = 1 (vô lý)

Nếu m ≠ 1  ⇒ x = m + 2 m + 1 = 1 + 1 m + 1

Để hệ phương trình có nghiệm nguyên duy nhất ⇒ x nguyên

⇒ m + 1 = 1 ⇒ m = 0; m = −2

Với m = 0 ⇒ x = 2 y = 0 (thỏa mãn)

Với m = −2 ⇒ x = 0 y = 2 (thỏa mãn)

Đáp án:C

24 tháng 2 2021

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

6 tháng 9 2017

Ta có x + y = 2 m x − y = m ⇒ x + mx = 2 + m ⇒ x(m + 1) = m + 2

Nếu m = −10.x = 1 (vô lí)

Nếu m 1 ⇒ x = m + 2 m + 1 = 1 + 1 m + 1

Để hệ phương trình đã cho có nghiệm nguyên duy nhấtx nguyên

⇒ m + 1   = ± 1 ⇒ m = 0; m = −2

Với m = 0 ⇒ x = 2 y = 0 (thỏa mãn)

Với m = −2 ⇒ x = 0 y = 2 (thỏa mãn)

Đáp án: C

23 tháng 12 2023

a: Thay m=-2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)

\(x^2-y^2=4\)

=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)

=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)

=>\(8m^2+8m+2=4\left(m+1\right)^2\)

=>\(8m^2+8m+2-4m^2-8m-4=0\)

=>\(4m^2-2=0\)

=>\(m^2=\dfrac{1}{2}\)

=>\(m=\pm\dfrac{1}{\sqrt{2}}\)

a: Khi m=2 thì hệ sẽ là;

2x-y=4 và x-2y=3

=>x=5/3 và y=-2/3

b:  mx-y=2m và x-my=m+1

=>x=my+m+1 và m(my+m+1)-y=2m

=>m^2y+m^2+m-y-2m=0

=>y(m^2-1)=-m^2+m

Để phương trình có nghiệm duy nhất thì m^2-1<>0

=>m<>1; m<>-1

=>y=(-m^2+m)/(m^2-1)=(-m)/m+1

x=my+m+1

\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)

x^2-y^2=5/2

=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)

=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)

=>2(3m^2+4m+1)=5(m^2+2m+1)

=>6m^2+8m+2-5m^2-10m-5=0

=>m^2-2m-3=0

=>(m-3)(m+1)=0

=>m=3