Ai làm hộ mình a, b bài 4 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
Bài 3:
1: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
1: \(x^2-2x+1=\left(x-1\right)^2\)
2: \(4x^2-4x+1=\left(2x-1\right)^2\)
3: \(16x^2+8x+1=\left(4x+1\right)^2\)
4: \(9x^2+12x+4=\left(3x+2\right)^2\)
5: \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Bài 8:
a: Ta có: \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\cdot\dfrac{x^4-2x^2+1}{2}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{2}\)
\(=\dfrac{x^2-x-2-x^2-x-2}{1}\cdot\dfrac{x-1}{2}\)
\(=\dfrac{-2x\cdot\left(x-1\right)}{2}=-x\left(x-1\right)\)
Bài 8:
a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^4-2x^2+1}{2}\left(đk:x\ne1,x\ne-1\right)\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x^2-1\right)^2}{2}=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{2}=\dfrac{-2x\left(x-1\right)}{2}=-x^2+x\)
b) \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=2\)(do đkxđ của A là \(x\ne1\))
\(A=-x^2+x=-2^2+2=-2\)
c) Do \(A=-x^2+x\in Z\forall x\in Z\)
\(\Rightarrow A\in Z\Leftrightarrow x\in Z\)
(x+1)+(x+4)+(x+7)+....+(x+28)=155
=>10x+(1+4+....+28)=155
=>10x+[10(1+28)]/2=155
=>10x+145=155
=>10x=10
=>x=1
đầu tiên là ta tìm có bao nhiêu số x , ta lấy (28-1):3+1 = 10 (số) . Vậy là có 10 số x và 10 số cộng với x . Rồi ta sẽ tìm tổng của các số cộng với x , ta có : (28+1)x10:2= 145 . Sau đó ta lấy tổng của x và các số kia trừ đi tổng các số cộng với x , đó là : 155-145=10 . Rồi ta lấy 10 đó chia cho 10 số x để tìm 1 số x , ta có : 10:10=1 . Vậy x=1. (nếu đúng thì tick cho tớ nhé ! ) cái này là tớ tự suy luận mà ra .
1: Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+EC=DE
nên DE=AC+EB