cm bất dẳng thức sau
a(a+b)(a+c)(a+b+c)+b2c2>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé,một lời giải không thể quen thuộc hơn=)
Bổ sung đk a, b, c > 0.
Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\)
BĐT \(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Kết hợp đk x, y, z > 0 suy ra đpcm.
đầu bài có phải ntn ko?
\(\overline{abab}=\overline{cdcd}\left(a,b,c,d\ne0\right)\). Chứng minh \(\overline{a2}.\overline{b2c2}.\overline{d2a2}.\overline{b2c2}.\overline{d2}=\left(a-b\right)2.\left(c-d\right)2\)
Mà cái đầu bài bn viết khó hiểu thế .
Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)
\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
đpcm
Gải sử..
\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
Có \(\left|a-b\right|^2=\left(a-b\right)^2\)
\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)
\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)
Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng )
Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm )
\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)
\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? )
...
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm