Biết 3x4y chia hết cho 4, 5, 9. Tìm x, y
Nói cả lời giải nhé mik đang gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
Vì A chia hết cho 9
=>3+x+4+0 chia hết cho 9 hay 7+x chia hết cho 9
=>x=2
Vậy số cần tìm là 3240
Vì x chia 6 dư 4, chia 9 dư 7 nen ta có
x+2 chia hết cho 6 và 9
Suy ra x+2 thuộc BC(6,9)
Ta có 6=2.3 suy ra BCNN(6,9)=2.3^2=18
9=3^2
Vậy x+2 thuộc BC(6,9)={0;18;36;....}
x thuộc {16;34;....}
Mà 30<x<100 nên x thuộc {36;70;88}
Câu trả lời hay nhất: số các số có chữ số hàng chục trùng với chữ số hàng đơn vị : 9 số ( tương ứng với 9 chữ số 1, 2,...., 9 )
nếu chữ số hàng chục là x thì số các số có hàng chục là x và có số hàng đơn vị nhỏ hơn cũng là x ( vì số các số tự nhiên liều trước của 1 số, kể cả số 0 bằng chính số đó )
vậy nên số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ( số )
vậy có tất cả 45 tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Vì trong 3 số 6, 10 và x số nào cũng chia hết cho 2 số còn lại
suy ra 6.10=60 chia hết cho x
Suy ra 60 chia hết cho x
Suy ra x thuộc Ư(60)={+_1;+_60:+_2;+_30;+_3;+_20;+_4;+_15;+_5;+_12;+_6;+_10}
\(A\)chia cho \(5\)dư \(4\)nên \(y=4\)hoặc \(y=9\)mà \(A\)chia hết cho \(2\)nên \(y=4\).
Do \(A\)chia hết cho \(3\)nên tổng các chữ số của nó chia hết cho \(3\):
\(\left(5+x+1+4\right)⋮3\Leftrightarrow\left(x+1\right)⋮3\Rightarrow x\in\left\{2,5,8\right\}\).
Để 5a9b chia hết cho 5 thì b=0 hoặc b=5
Nếu b=0 thì (5+a+9+0) chia hết cho 3
=>(14+a) chia hết cho 3
=>a=1;4;7
Nếu b=5 thì (5+a+9+5) chia hết cho 3
=>(19+a) chia hết cho 3
=>a=2;5;8
Lời giải:
Vì $\overline{3x4y}$ chia hết cho $4$ nên $y$ chẵn
Vì $\overline{3x4y}$ chia hết cho $5$ nên $y=0$ hoặc $y=5$
Mà $y$ chẵn nên $y=0$
$\overline{3x4y}\vdots 9$ nên:
$3+x+4+y\vdots 9$
$7+x+y\vdots 9$
$7+x+0\vdots 9$
$7+x\vdots 9$
Suy ra $x=2$
Vậy $x=2; y=0$