K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(\left\{{}\begin{matrix}\widehat{ABP}=\widehat{MBC}\left(=\widehat{ABC}+90^0\right)\\BA=BM\\BP=BC\end{matrix}\right.\Rightarrow\Delta BAP=\Delta BMC\left(c.g.c\right)\\ \Rightarrow AP=CM;\widehat{BAP}=\widehat{BMC}\)

Gọi \(\left\{O\right\}=AP\cap CM\)

\(\widehat{AIO}=\widehat{BIM}\left(đđ\right)\\ \Rightarrow\widehat{AOI}=180^0-\left(\widehat{BAP}+\widehat{AIO}\right)=180^0-\left(\widehat{BMC}+\widehat{BIM}\right)=90^0\)

Lại có HD,DE,EG lần lượt là đtb \(\Delta ACD,\Delta ACM,\Delta APM\)

Do đó \(\left\{{}\begin{matrix}HD\text{//}AP;HD=\dfrac{1}{2}AP\left(1\right)\\DE\text{//}CM;DE=\dfrac{1}{2}CM\left(2\right)\\EG\text{//}AP;EG=\dfrac{1}{2}AP\left(3\right)\end{matrix}\right.\)

\(\left(1\right)\left(3\right)\Rightarrow HD\text{//}EG;HD=EG\\ \Rightarrow DEGH\text{ là hbh}\\ \text{Mà }AP=CM\Rightarrow HD=HE\\ \Rightarrow DEGH\text{ là hình thoi}\)

Mặt khác: \(DE\text{//}CM;AP\bot CM\Rightarrow AP\bot DE\)

Mà \(HD\text{//}AP\Rightarrow DE\text{//}HD\)

Vậy DEGH là hình vuông

22 tháng 11 2021

Tứ giác EGCD có : 

góc EBC = góc GCB = góc EGC = 90 độ 

-> EGCB là hình chữ nhật

Mà P,Q,M,N lần lượt là đỉnh của 4 cạnh 

 ->MNPQ là hình vuông 

Đề sai rồi bạn

14 tháng 12 2022

a: Xét ΔCAB có CE/CA=CD/CB

nên ED//AB và ED=AB/2

=>AEDB là hình thang

mà góc EAB=90 độ

nênAEDB là hình thang vuông

b: Xét tứ giác ABKC có

D là trung điểm chung của AK và BC

góc BAC=90 độ

Do đó: ABKC là hình chữ nhật

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó:ADME là hình chữ nhật

Suy ra: DE=AM

b: Xét ΔABC có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

M là trung điểm của bC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có 

E là trung điểm của AC
M là trung điểm của BC

DO đó: EM là đường trung bình

=>EM//AB và EM=AB/2

=>EM//BD và EM=BD

hay BDEM là hình bình hành

c: Ta có: BDEM là hình bình hành

mà O là giao điểm của hai đường chéo

nên O là trung điểm chung của BE và DM

Xét ΔEBC có

O là trung điểm của EB

I là trung điểm của CE
Do đó: OI là đường trung bình

=>OI=BC/2 

mà AM=BC/2

nên OI=AM

Xét tứ giác AOMI có MO//AI

nên AOMI là hình thang

mà OI=AM

nên AOMI là hình thang cân

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.