Cho x,y là 2 số dương thay đổi.Tìm giá trị nhỏ nhất của biểu thức:
\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)
Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)
\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)
\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)
Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)
\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)
\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))
Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
(x+y)^2/x^2+y^2+(x+y)^2/xy>=(x+y)^2/x^2+y^2+xy
Dấu = xảy ra khi (x+y)^2/2xy=x/2y+y/2x+1
=>Min=2
Lời giải:
Áp dụng BĐT AM-GM:
$S=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}$
$=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}$
$\geq 3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}+\frac{2xy}{2xy}$
$=3+2+1=6$
Vậy $S_{\min}=6$ khi $x=y$