36- x : 2 = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x^2-16}-\sqrt{x^2-36}=2\)
\(\Leftrightarrow\left(\sqrt{x^2-16}-\sqrt{x^2-36}\right)\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow\left[\left(\sqrt{x^2-16}\right)^2-\left(\sqrt{x^2-36}\right)^2\right]=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow x^2-16-x^2+36=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow20=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow10=\sqrt{x^2-16}+\sqrt{x^2-36}\)
hay \(T=10\)
Vậy \(T=10\).
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
5.x - 9 = 5 + 3.x
5x - 3x = 5 + 9
2x = 14
x = 14 : 2
x = 7
--------------------
(5x + 1)² = 36/49
5x + 1 = 6/7 hoặc 5x + 1 = -6/7
*) 5x + 1 = 6/7
5x = 6/7 - 1
5x = -1/7
x = -1/7 : 5
x = -1/35
*) 5x + 1 = -6/7
5x = -6/7 - 1
5x = -13/7
x = -13/7 : 5
x = -13/35
Vậy x = -13/35; x = -1/35
--------------------
2ˣ⁻¹ = 16
2ˣ⁻¹ = 2⁴
x - 1 = 4
x = 4 + 1
x = 5
\(1,\frac{x}{27}=\frac{-2}{36}\)
\(=>x.36=-2.27\)
\(=>x.36=-54\)
\(=>x=\frac{-3}{2}\)
\(2,\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=\frac{-1}{4}\end{cases}}=>\orbr{\begin{cases}x=\frac{1}{4}-\frac{1}{2}\\x=-\frac{1}{4}-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-3}{4}\end{cases}}\) Vậy x thuộc ....
\(\sqrt{\dfrac{36}{16}}x-\dfrac{2}{3}=\dfrac{3}{2}x-\dfrac{2}{3}\)
a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6
b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {6^2}} = 10\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)
Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)
Độ dài trục thực 16
Độ dài trục ảo 12
c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {1^2}} = \sqrt {17} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 2
d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6
x= 40
\(x=40\)