K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

x= 40

23 tháng 12 2021

\(x=40\)

15 tháng 9 2019

Ta có: \(\sqrt{x^2-16}-\sqrt{x^2-36}=2\)

\(\Leftrightarrow\left(\sqrt{x^2-16}-\sqrt{x^2-36}\right)\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)

\(\Leftrightarrow\left[\left(\sqrt{x^2-16}\right)^2-\left(\sqrt{x^2-36}\right)^2\right]=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)

\(\Leftrightarrow x^2-16-x^2+36=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)

\(\Leftrightarrow20=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)

\(\Leftrightarrow10=\sqrt{x^2-16}+\sqrt{x^2-36}\)

hay \(T=10\)

Vậy \(T=10\).

25 tháng 1 2018

1,Tìm x:

\(\left(x+8\right)+\left(x-4\right)=x-20\)

\(\Leftrightarrow x+8+x-4=x-20\)

\(\Leftrightarrow x+x-x=-20+4-8\)

\(\Leftrightarrow x=-24\)

Vậy...

25 tháng 1 2018

Bài 2 nữa bạn

17 tháng 8 2020

dạ x mũ 4

17 tháng 8 2020

vâng, mình cảm ơn ạ

b: 

ĐKXĐ: x>=4

\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)

=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)

=>\(6\sqrt{x-4}=36\)

=>\(\sqrt{x-4}=6\)

=>x-4=36

=>x=40

17 tháng 8 2023

5.x - 9 = 5 + 3.x

5x - 3x = 5 + 9

2x = 14

x = 14 : 2

x = 7

--------------------

(5x + 1)² = 36/49

5x + 1 = 6/7 hoặc 5x + 1 = -6/7

*) 5x + 1 = 6/7

5x = 6/7 - 1

5x = -1/7

x = -1/7 : 5

x = -1/35

*) 5x + 1 = -6/7

5x = -6/7 - 1

5x = -13/7

x = -13/7 : 5

x = -13/35

Vậy x = -13/35; x = -1/35

--------------------

2ˣ⁻¹ = 16

2ˣ⁻¹ = 2⁴

x - 1 = 4

x = 4 + 1

x = 5

28 tháng 12 2016

\(1,\frac{x}{27}=\frac{-2}{36}\)

\(=>x.36=-2.27\)

\(=>x.36=-54\)

\(=>x=\frac{-3}{2}\)

\(2,\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=\frac{-1}{4}\end{cases}}=>\orbr{\begin{cases}x=\frac{1}{4}-\frac{1}{2}\\x=-\frac{1}{4}-\frac{1}{2}\end{cases}}\)

\(\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-3}{4}\end{cases}}\) Vậy x thuộc ....

\(\sqrt{\dfrac{36}{16}}x-\dfrac{2}{3}=\dfrac{3}{2}x-\dfrac{2}{3}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{8^2} + {6^2}}  = 10\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)

Độ dài trục thực 16

Độ dài trục ảo 12

c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {1^2}}  = \sqrt {17} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 2

d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6