Giá trị nhỏ nhất của A=x^2+2y^2-2xy+2x-10y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x
Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0
Vậy Min A = 0
Còn cách khác nữa như sau :
Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE
Y? 0 =
Solve for X? 0 =
KQ ra Solve x = 0
Vậy Min A = 0 khi x = 0 và y = 0.
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
A = x2 + 2y2 - 2xy + 2x - 2y + 1
= x2 - 2xy + y2 + 2 ( x - y ) + 1 + y2
= ( x - y )2 + 2 ( x - y ) + 1 + y2
= ( x - y + 1 )2 + y2 ≥ 0
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
B = x2 + 2y2 - 2xy + 2x - 10y
= x2 - 2xy + y2 + 2x - 2y + 1 + y2 - 8x + 16 - 17
= ( x - y )2 + 2 ( x - y ) + 1 + ( y - 4 )2 - 17
= ( x - y + 1 )2 + ( y - 4 )2 - 17 ≥ - 17
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Bài 1:
a)\(F=x^2+26y^2-10xy+14x-76y+59\)
\(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)
\(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)
Để Fmin=1 thì y=3;x=8
b)\(H=m^2-4mp+5p^2+10m-22p+28\)
\(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)
\(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Để Hmin=2 thì p=1;m=-3
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)