K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

15/n=>n thuộc ước 15 mà ước 15={1;3;5;15}Vậy lần lượt=1;3;5;15

16/n+1=>n+1 thuộc ước 16 mà ước 16 ={1;2;4;8;16}Vậyn lần lượt =0;1;3;7;15

6/2n-5=>2n-5 thuộc ước 6 mà ước 6={1;2;3;6}Vậy n lần lượt=3;loại;4;loại

Nếu n thuộc N thì như trên

3 tháng 2 2016

15/n=>n thuộc ước nguyên  15 

12/n+1=>n+1 thuộc ước nguyên 12

6/2n-5=>2n-5 thuộc ước nguyên 6

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

9 tháng 4 2018

mình cũng đang hỏi câu này nè

25 tháng 2 2023

=1

 

20 tháng 8 2015

gọi d là ước nguyên tố chung của n + 3 và n - 12

ta có : n + 3 : hết cho d ; n - 12 : hết cho d

=> ( n + 3) - ( n - 12) : hết cho d

=> 15 : hết cho d

=> d \(\varepsilon\){ 3 ; 5 }

nếu d = 3 

=> n + 3 : hết cho 3

=> n : hết cho 3

=> n \(\ne\) 3k

nếu d = 5

=> n - 12 : hết cho 5

=> n - 10 - 2 : hết cho 5

=> n - 2 : hết cho 5

=> n \(\ne\)5k + 2

1 tháng 3 2017

Cho phân số : \(\frac{1+2+3+...+20}{6+7+8+...+36}\)

Hãy xóa một số hạng ở mẫu của phân số trên để giá trị của phân số đó không không đổi

9 tháng 2 2019

xxx là phim xem xông xóa là xóa phim xéc

9 tháng 2 2019

chuẩn rồi