K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)

Vậy \(A=\frac{1}{20}\)

\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)

\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)

Vậy \(B=1004\)

13 tháng 5 2017

DẤU CHẤM LÀ DẤU NHÂN

a, 

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)

b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)

8 tháng 7 2018

A/ \(\left(10\frac{3}{4}+3\frac{4}{5}\right)-\left(5\frac{3}{4}-1\frac{1}{5}\right)\)

\(=\left(10\frac{3}{4}-5\frac{3}{4}\right)+\left(3\frac{4}{5}+1\frac{1}{5}\right)\)

\(=5+5\)

\(=10\)

chúc bạn học tốt nha

4 tháng 8 2017

Với mọi n thuộc N* ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)

\(=\left(n^2+n+\frac{1}{2}\right)\left(n^2-n+\frac{1}{2}\right)\)

\(\Rightarrow N=\frac{\left(2^2+2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)...\left(2008^2+2008+\frac{1}{2}\right)\left(2008^2-2008+\frac{1}{2}\right)}{\left(1^2+1+\frac{1}{2}\right)\left(1^2-1+\frac{1}{2}\right)...\left(2007^2+2007+\frac{1}{2}\right)\left(2007^2-2007+\frac{1}{2}\right)}\)

\(=\frac{\left(2.3+\frac{1}{2}\right)\left(1.2+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)...\left(2008.2009+\frac{1}{2}\right)}{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)...\left(2007.2008+\frac{1}{2}\right)}\)

\(=\frac{2008.2009+\frac{1}{2}}{\frac{1}{2}}=8068145\)

25 tháng 2 2017

\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2007^2}\right)\)

\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}......\frac{2007^2-1}{2007^2}\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2.2}.\frac{\left(3-1\right)\left(3+1\right)}{3.3}.\frac{\left(4-1\right)\left(4+1\right)}{4.4}....\frac{\left(2007-1\right)\left(2007+1\right)}{2007.2007}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{2006.2008}{2007.2007}\)

\(=\frac{\left(1.2.3.....2006\right)\left(3.4.5....2008\right)}{\left(2.3.4...2007\right)\left(2.3.4.....2007\right)}\)

\(=\frac{1.2008}{2007.2}=\frac{1004}{2007}\)

4 tháng 1 2017

a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)

\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)

\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)

15 tháng 5 2019

\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{2007^2}\right)=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{4028049}\right)=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{4028048}{4028049}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{2006.2008}{2007.2007}=\frac{1.2.3...2006}{2.3.4...2007}.\frac{3.4.5....2008}{2.3.4....2007}=\frac{1}{2007}.\frac{2008}{2}=\frac{1}{2007}.1004=\frac{1004}{2007}\)Tích và theo dõi mk nhé

Chúc bạn học tốthihi

23 tháng 8 2018

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)

    \(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)

     \(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)

      \(=\frac{1}{2003}\)