Cho đa thức M = ( a\(^2\) + b\(^2\) - c\(^2\)) - 4a\(^2\)b\(^2\)
CMR nếu a,b,c là số đo các cạnh của một tam giác thì M < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0
M = ( a2 + b2 - c2 )2 - 4a2b2
= ( a2 + b2 - c2 )2 - ( 2ab )2 = (a2 + b2 - c2 + 2ab )( a2 + b2 - c2 - 2ab )
= [( a + b )2 - c2 ] . [( a - b )2 -c2 ]
= ( a + b + c )( a+ b - c )( a - b + c )( a - b -c )
olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao
a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)
Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0
c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)
Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6
Đề đúng: \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a) Ta có:
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(M=\left[\left(a^2-2ab+b^2\right)-c^2\right]\left[\left(a^2+2ab+b^2\right)-c^2\right]\)
\(M=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
b) Nếu a,b,c là độ dài 3 cạnh của tam giác thì:
\(\hept{\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c>0\\a-b+c>0\\a-b-c< 0\end{cases}}\) , mà a + b + c > 0
=> \(M< 0\)