K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

X-6 thuộc ước của 7

Mà ước của 7 là -1;-7;1;7

Suy ra ta thay từng trường hợp vào VD  như trường hợp 1 là : x-6=-1--> x=5

 Từ đó tự làm nhé

8 tháng 7 2021

Để A đạt GTLN 

=> 6 - x  đạt GTNN 

=> 6 - x = 1 (Vì x nguyên) (nếu 6 - x < 0 thì A < 0 => A không đạt GTLN) 

=> x = 5

Vậy x = 5 thì A đạt GTLN

15 tháng 2 2017

\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)

Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN

Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5

Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5

15 tháng 2 2017

x=5;A=2001

tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu

10 tháng 8 2016

\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)

=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6

A lớn nhất khi 6-x nên => 6-x=1

=> x=5

giá trị lớn nhất của A khi đó là:

A=(2006-5)/(6-5)=2001

10 tháng 8 2016

\(A=\frac{6-x+2000}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN 6x đạt GTNN 

Ta có  6x1

Dấu = xảy ra x=5⇔x=5

Do đó GTLN của A \(=1+\frac{2000}{1}=2000+1=2001\)

Vậy GTLN của A là 2001 x=5

10 tháng 8 2016

\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN 

Ta có  \(6-x\ge1\)

Dấu = xảy ra \(\Leftrightarrow x=5\)

Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)

Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Toán lớp 6 

8 tháng 7 2019

Biểu thức:

\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)

Để A đạt giá trị lớn nhất:

thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất

<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất

=> \(6-x=1\Leftrightarrow x=5\)

Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)

27 tháng 3 2020

bài này lớp 7 nha bn

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)