a) 3x + 10 = 42
help me !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy - x - y = 10 => (xy - x) - (y - 1) = 11 => (x - 1)(y - 1) = 11 => Tự bạn giải tiếp nha
b) xy + 3x - 6y = 21 => (xy + 3x) - (6y + 18) = 3 => (x - 6)(y + 3) = 3 => Tự bạn giải tiếp nha
c) xy + 4x - 3y =12 => (xy + 4x) - (3y + 12) = 0 => (x - 3)(y + 4) = 0 => x = 3 hoặc y = -4
a,xy-x-y=10
=>x(y-1)-y+1=10+1
=>x(y-1)-1(y-1)=11
=>(x-1)(y-1)=11
=>x-1 va y-1 la uoc cua 11
................
hai y con lai lam giong nhu vay
\(M=\left(-x-8\right)-\left(-3x+10\right)-\left(x-10\right)\\ =-x-8+3x-10-x+10\\ =\left(-x+3x-x\right)+\left(-8-10+10\right)\\ =x-8\)
\(N=-\left(x-100\right)+\left(-3x+10\right)-\left(-x-100\right)\\ =-x+100+-3x+10+x+100\\ =\left(-x+-3x+x\right)+\left(100+10+100\right)\\ =-3x+210\\ =3\left(-x+70\right)\)
\(Q=100-\left(-4x+1\right)-\left(99+x\right)-\left(x-1\right)\\ =100+4x-1-99-x-x+1\\ =\left(4x-x-x\right)+\left(100-1-99+1\right)\\ =2x+1\)
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
a: -3x+4+5x=-10-x
=>2x+4=-x-10
=>3x=-14
hay x=-14/3
b: \(-x+1=-3x-8\)
=>-x+3x=-8-1
=>2x=-9
hay x=-9/2
c: \(8-\left(x-1\right)=10+\left(x+5\right)\)
=>x+15=8-x+1
=>x+15=9-x
=>2x=-6
hay x=-3
d: \(100+\left(x+7\right)-\left(-x+3\right)=8+\left(x+100\right)\)
=>x+7+x-3=8+x
=>2x+4-x-8=0
=>x=4
a, (3x-1)(x2+2)=(3x-1)(7x-10)
<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0
<=>(3x-1)(x2+2-7x+10)=0
<=>(3x-1)(x2-7x+12)=0
<=>(3x-1)(x2-3x-4x+12)=0
<=>(3x-1)(x-3)(x-4)=0
<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)
b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))
<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)
<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>2t2+2t+13=5t+15
<=>2t2+2t-5t+13-15=0
<=>2t2-3t-2=0
<=>2t2-4t+t-2=0
<=>(t-2)(2t+1)=0
<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)
Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)
Giải:
a) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
Chia cả hai vế cho 3x-1, ta được:
\(x^2+2=7x-10\)
\(\Leftrightarrow x^2-7x+10+2=0\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow x^2-4x-3x+12=0\)
\(\Leftrightarrow x\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (1)
ĐKXĐ: \(t\ne2;t\ne-3\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t-2\right)\left(t+3\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
\(\Rightarrow\left(t+3\right)^2+\left(t-2\right)^2=5t+15\)
\(\Leftrightarrow t^2+6t+9+t^2-4t+4=5t+15\)
\(\Leftrightarrow2t^2+2t+13=5t+15\)
\(\Leftrightarrow2t^2+2t+13-5t-15=0\)
\(\Leftrightarrow2t^2-3t-2=0\)
\(\Leftrightarrow2t^2-4t+t-2=0\)
\(\Leftrightarrow2t\left(t-2\right)+\left(t-2\right)=0\)
\(\Leftrightarrow\left(2t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{2}\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)
Vậy ...
Ai chẳng biết chuyển vế đổi dấu :v
a) \(x-7=4x+10\)
\(x-4x=10+7\)
\(-3x=17\)
\(x=\dfrac{17}{-3}\)
Vậy \(x=\dfrac{17}{-3}\)
b) \(2x+5=-3x+7\)
\(2x+3x=7-5\)
\(5x=2\)
\(x=\dfrac{2}{5}\)
Vậy \(x=\dfrac{2}{5}\)
c) \(x-\left(3x+7\right)=6x-1\)
\(x-3x-7=6x-1\)
\(-2x-7=6x+1\)
\(-7-1=6x+2x\)
\(-8=8x\)
\(x=\dfrac{-8}{8}=-1\)
Vậy \(x=-1\)
d) \(x+\left(5x-1\right)=15\)
\(x+5x-1=15\)
\(6x=15+1\)
\(6x=16\)
\(x=\dfrac{16}{6}=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\)
1 , x - 7 = 4x + 10
x - 4x = 10 + 7
- 3x = 17
x = 17 : ( - 3 )
x = \(\dfrac{-17}{3}\)
2 , 2x + 5 = -3x + 7
2x + 3x = 7 -5
5x = 2
x = 2 : 5
x =\(\dfrac{2}{5}\)
3 , x - ( 3x + 7 ) = 6x - 1
x - 3x - 7 = 6x - 1
x - 3x -6x = -1 +7
-8x = 6
x = 6 : ( -8 )
x = \(\dfrac{-3}{4}\)
4 , x + ( 5x -1 ) = 15
x + 5x - 1 = 15
x + 5x = 15 + 1
6x = 16
x = 16 : 6
x = \(\dfrac{8}{3}\)
5 , / x + 1 / = / 2x - 5 /
TH 1 : x + 1 = 2x - 5
x - 2x = -5 -1
- x = -4
= > x = 4
TH 2 : -x -1 = -2x + 5
-x + 2x = 5 + 1
x = 6
6 , / 3x + 8 / - / x -10 / = 0
3x + 8 - x + 10 = 0
3x - x = 0 - 10 - 8
2 x = -18
x = -18 : 2
x = - 9
a) \(113.15-13.15+\left(-500\right)=15.\left(113-13\right)+\left(-500\right)\)
\(=15.100+\left(-500\right)\)
\(=1500+\left(-500\right)\)
\(=1000\)
c) \(\left(3x-12\right):2=4^2.3\)
\(\left(3x-12\right):2=16.3\)
\(3x-12=16.3.2\)
\(3x-12=96\)
\(3x=108\)
\(x=36\)
d) \(25-\left|x\right|=12\)
\(\left|x\right|=25-12\)
\(\left|x\right|=13\)
\(\Rightarrow x\in\left\{-13;13\right\}\)
b) \(\left(3^2.5-60:2^2\right)-20.10^0=\left(9.5-60:4\right)-20.1\)
\(=\left(45-15\right)-20\)
\(=30-20\)
\(=10\)
Lưu ý: -Dấu "." là dấu nhân
- Đề bài này là đúng (đã trao đổi với Nguyễn Phương Thảo 2008)
\(3x+10=4^2\\ \Rightarrow3x+10=16\\ \Rightarrow3x=6\\ \Rightarrow x=2\)
x=2