K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Ta có : \(\hept{\begin{cases}a⋮c\\b⋮c\end{cases}}\Rightarrow\left(a+b\right)⋮c\)

Vì \(a⋮c\)và \(b⋮c\)nên \(am⋮c\)và \(bn⋮c\)với \(m,n\inℤ\)

\(\Rightarrow\left(am+bn\right)⋮c\)(đpcm)

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

9 tháng 8 2016

a chia hết cho b ; b chia hết cho a nên a = bm ; b = an (m,n thuộc N* vì a,b thuộc N*)

a = bm = anm => nm = 1 => n = m = 1 => a = b

a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c

\(\Rightarrow am⋮c;bn⋮c\)

\(\Rightarrow am\pm bn⋮c\)(ĐPCM)

Vậy nếu a\(⋮\)c;b\(⋮\)c  \(\Rightarrow am\pm bn⋮c\)

b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m

\(\Rightarrow\left(a+b\right)+c⋮m\)

Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)

\(\Rightarrow c⋮m\)(ĐPCM)

Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m

*Lưu ý ĐPCM=Điều phải chứng minh

Chúc bn học tốt

2 tháng 4 2020

thanks bạn

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

29 tháng 8 2020

Bg

a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x   (x \(\inℤ\))

=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)

=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4

=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)

=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6

=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1

=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6

=> Tổng ba số tự nhiên liên tiếp chia hết cho 6

=> ĐPCM

b) Bg

Tổng ba số lẻ liên tiếp luôn là một số lẻ

Mà 6 chẵn

=> Tổng của ba số lẻ liên tiếp không chia hết cho 6

=> ĐPCM

c) Bg

Ta có: a \(⋮\)b và b \(⋮\)c      (a, b, c \(\inℤ\))

Vì a \(⋮\)

=> a = by    (bởi y \(\inℤ\))

Mà b \(⋮\)c

=> by \(⋮\)c

=> a \(⋮\)c

=> ĐPCM

d) Bg

Ta có: P = a + a2 + a3 +...+ a2n      (a, n\(\inℕ\))

=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n

=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]

=> P = (a + 1).(a + a3 + a2n - 1\(⋮\)a + 1

=> P = a + a2 + a3 +...+ a2n  \(⋮\)a + 1

=> ĐPCM (Điều phải chứng mình)