Tam giác cân cần thêm điều kiện gì để trở thành tam giác đều?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vì góc B=góc C
mà góc IBC=1/2 góc EBC và ICB=1/2 góc DCB
nên suy ra IBC=ICB suy ra IBC là tam giác cân
b)xét tam giác ECB và tam giác DBC có
BC là cạnh chung
góc ECB= góc DBC(câu a)
góc B= góc C
suy ra tam giác ECB = tam giác DBC (g.c,g)
cho cái k xong sẽ làm câu c và d
a , Ta có : \(\Delta ABC\)cân tại B => BA = BC
Vì AM là đường trung tuyến của BC = > BM = MC
VÌ CN là đường trung tuyến của BA = > BN = NA
Ta có : BN + NA = BA
BM + MC = BC
Mà BM = MC ; BN = NA => BM = MC = BN = NA
Xét \(\Delta ANC\)với \(\Delta CMA\) có :
NA = MC ( CMt )
\(\widehat{BAC}=\widehat{BCA}\)( \(\Delta ABC\)cân tại B )
CA chung
=> \(\Delta ANC\)= \(\Delta CMA\)( c . g . g )
= > CN = MA ( 2 cạnh tương ứng )
b , Xét \(\Delta BMA\)và \(\Delta BCN\)có :
BA = BC ( \(\Delta ABC\)cân tại B )
\(\widehat{B}\)chung
BN = BM ( Cmt )
=> \(\Delta BMA\) = \(\Delta BCN\) ( c . g . c )
=> \(\widehat{BAM}=\widehat{BCN}\)( 2 góc tương ứng )
Ta có : \(\widehat{BAM}+\widehat{MAC}=\widehat{BAC}\)
\(\widehat{BCM}+\widehat{NCA}=\widehat{BCA}\)
Mà \(\widehat{BAM}=\widehat{BCN}\)
\(\widehat{BAC}=\widehat{BCA}\)
=> \(\widehat{MAC}=\widehat{NCA}\)
=> \(\Delta IAC\)cân tại I
c , Theo bất đẳng thức tam giác ta có :
AI + IC > AC
Mà AI = IC ( \(\Delta IAC\)cân tại I )
=> 2AI > AC
hay AC < 2AI
d , Vì \(BH\perp AC\)=> BH là đường cao của \(\Delta ABC\)
Theo tính chất đường cao => BH vừa là đường cao đồng thời là đường trung tuyến , đường phân giác , đường trung trực của \(\Delta ABC\)
Vì hai trung tuyến AM và CN cắt nhau tại I => I là trọng tâm của \(\Delta ABC\)(1)
mà BH là đường trung tuyến của \(\Delta ABC\)(2)
Từ (1) và (2) => 3 điểm B , I , H thẳng hàng .
d , Tớ cũng chju rồi :>
a,Xét tam giác BDC:
Ta có: \(\hept{\begin{cases}gócD=90^0\\BM=MC\end{cases}\Rightarrow DM=\frac{1}{2}BC}\) (1)
Xét tam giác BEC:
Ta có: \(\hept{\begin{cases}gócE=90^0\\BM=MC\end{cases}\Rightarrow EM=\frac{1}{2}BC}\) (2)
Từ (1) và (2): \(\Rightarrow EM=MD=\frac{1}{2}BC\)
Suy ra: tam giác EMD là tam giác cân.
Lại có: N là trung điểm của tam giác can EMD.
Hay: N là đường cao của tam giác EMD
Vậy MN vuông góc với ED
b,Bó tay
Một góc bằng 60o