Tìm số tự nhiên có 3 chữ số chia 17 dư 8; chia 25 dư 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời\
Câu 1 : Gọi số tự nhiên cần tìm là a ( a thuộc N ; a < 999 )
a chia 8 dư 7 => ( a + 1 ) chia hết cho 8
a chia 31 dư 28 => ( a + 3) chia hết cho 31
Ta có ( a + 1 ) + 64 chia hết cho 8 = ( a + 3 ) + 62 chia hết cho 31
Vậy ( a + 65 ) chia hết cho 8 và 31
=> a + 65 chia hết cho 248
Vì a < 999 nên ( a + 65 ) < 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì a cũng phải là số tự nhiên lớn nhất thỏa mãn
=> a = 927
Vậy số tự nhiên cần tìm là : 927
Bài 1.
Gọi số cần tìm là x (x X ; x 999)
x chia 8 dư 7 =>(x+1) chia hết cho 8
x chia 31 dư 28 =>(x+3)chia hết cho 31
Ta có (x+1 ) +64 chia hết cho 8 =(x+3)+62 chia hết cho 31
Vậy (x+65)chia hết cho 8 ;31
Mà ( 8;31)=1
=>x+65 cia hết co 248
Vì x 999 nên (x+ 65) 1064
Để x là số tự nhiên lớn nhất thõa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thõa mãn
=> x=927
Vậy số x cần tìm là:927
a : 17 dư 8 => (a+9) chia hết cho 17 (1)
a : 25 dư 16=> (a+9) chia hết cho 25 (2)
(1)(2) => a+9 thuộc BC(17;25) (3)
17=17
25=5^2
BCNN(17;25) = 17.5^2=425
BC(17;25)=B(425)={0;425;850;1275;...} (4)
(3)(4)=> a+9 thuộc {0;425;850;1275;...}
=> a thuộc {0-9;425-9;850-9;1275-9;...}
=> a thuộc {-9;416;841;1266;...}
vì a là số có 3 chữ số,a thuộc N
=> a=416;841
vậy a=....
gọi số cần tìm là a
Theo đề ra ta có: a-5 chia hết cho 8 => a+3 chia hết cho 8
a-7 chia hết cho 10=> a+3 chia hết cho 10
a-12 chia hết cho 15=> a+3 chia hết cho 15
a-17 chia hết cho 20=> a+3 chia hết cho 20
=> a+3 thuộc BC(8;10;15;20)
8=2^3
10=2.5
15=3.5
20=2^2.5
BCNN(8;10;15;20)=2^3.3.5=120
BC(8;10;15;20)={0;120;240;...}
=>a+3={0;120;240;...}
=>a={-3;117;237;...}
Vì a là số tự nhiên có 3 chữ số nhỏ nhất nên a chỉ có thể là 117
gọi số cần tìm là a
Theo đề ra ta có: a-5 chia hết cho 8 => a+3 chia hết cho 8
a-7 chia hết cho 10=> a+3 chia hết cho 10
a-12 chia hết cho 15=> a+3 chia hết cho 15
a-17 chia hết cho 20=> a+3 chia hết cho 20
=> a+3 thuộc BC(8;10;15;20)
8=2^3
10=2.5
15=3.5
20=2^2.5
BCNN(8;10;15;20)=2^3.3.5=120
BC(8;10;15;20)={0;120;240;...}
=>a+3={0;120;240;...}
=>a={-3;117;237;...}
Vì a là số tự nhiên có 3 chữ số nhỏ nhất nên a chỉ có thể là 117
gọi số tự nhiên cần tìm là a ( a \(\in\)N* )
theo bài ra : a chia 17 dư 8
\(\Rightarrow\)a = 17k1 + 8 ( k1 \(\in\)N )
a chia 25 dư 16
\(\Rightarrow\)a = 25k2 + 16 ( k2 \(\in\)N )
\(\Rightarrow\)a + 9 \(⋮\)17 ; 25
\(\Rightarrow\)a + 9 \(\in\)BC ( 17 ; 25 )
BCNN ( 17 ; 25 ) = 425
\(\Rightarrow\)a + 9 = B ( 425 ) = { 0 ; 425 ; 850 ; ... }
Ta thấy 425 và 850 là hai số thỏa mãn bài ra
\(\Rightarrow\)a = { 416 ; 841 }
Vậy số tự nhiên cần tìm là 416 và 841
Ta có: n:17(dư 8)=>n-8 chia hết cho 17=>n-8+17=n+9 chia hết cho 17
n:25(dư 16)=>n-16 chia hết cho 25=>n-16+25=n+9 chia hết cho 25
=>n+9 chia hết cho 17 và 25
=>n+9=BC(17,25)
mà (17,25)=1
=>BCNN(17,25)=17.25=425
=>n+9=B(425)=(425,850,1275,...)
=>n=(416,841,1266,...)
Vì n là số lớn nhất có 3 chữ số
=>n=841
Vậy n=841
gọi số cần tìm là a
Theo đề ra ta có: a-5 chia hết cho 8 => a+3 chia hết cho 8
a-7 chia hết cho 10=> a+3 chia hết cho 10
a-12 chia hết cho 15=> a+3 chia hết cho 15
a-17 chia hết cho 20=> a+3 chia hết cho 20
=> a+3 thuộc BC(8;10;15;20)
8=2^3
10=2.5
15=3.5
20=2^2.5
BCNN(8;10;15;20)=2^3.3.5=120
BC(8;10;15;20)={0;120;240;...}
=>a+3={0;120;240;...}
=>a={-3;117;237;...}
Vì a là số tự nhiên có 3 chữ số nhỏ nhất nên a chỉ có thể là 117
đúng nhé!
giải: Gọi số đó là A ta có:
A=17a+8=25a+16
A+9=17a+17=25a+25
A+9=17(a+1)=25(a+1)
=>(A+9) =17.25=425
=>A=416
Gọi số đó là A ta có:
A=17a+8=25a+16
A+9=17a+17=25a+25
A+9=17(a+1)=25(a+1)
=>(A+9) =17.25=425
=>A=416