K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1 2021

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)

Ta có: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-8=0\)

Do đó: C=0

7 tháng 3 2022

thay x=2; y=-2 vào  \(x^3-2y^2=2^3-2\left(-2\right)^2=8-8=0\)

\(\Rightarrow C=0\)  

ko hiểu thì nhìn ở trên các số nhân với nhau nhưng mà lại có 1 thừa số =0 nên cả cái biểu thức =0

30 tháng 12 2018

Đáp án C.

Tổng số hạt trong phân tử Y là 214 hạt.

4(2pM + nM) + 3(2pX + nX) = 214 (1)

Ion M3+ có số electron bằng số electron của ion  X4 −

pM - 3 = pX + 4 => pX = pM - 7 (2)

Tổng số hạt proton, nơtron, electron của nguyên tử nguyên tố M nhiều hơn tổng số hạt của nguyên tử nguyên tố X trong Y là 106

4(2pM + nM) - 3(2pX + nX) = 106 (3)

(1), (3) => 2pM + nM = 40 (4) và 2pX + nX = 18 (5)

(5),(2),(4) => pX = 6 ; pM = 13 => X là C (Carbon) và M là Al (Nhôm)

Y la Al4C3 (Nhôm carbua)

a:

Sửa đề: A=x^4-9x^3+21x^2+x+a

A chia hết cho B

=>x^4-2x^3-7x^3+14x^2+7x^2-14x+15x-30+a+30 chia hết cho x-2

=>a+30=0

=>a=-30

b: A chia hết cho B

=>x^4+2x^3-12x^3-24x^2+45x^2+90x-82x-164+a+164 chia hết cho x+2

=>a+164=0

=>a=-164

27 tháng 7 2023

chi tiết đc kh ạ?

 

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)