K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.

25 tháng 12 2021

Đặt ƯCLN(2n+1; 2n+3) = d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2 chia hết cho d

=> d ∈∈ Ư(2) = {1; 2}

Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.

Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau 

13 tháng 11 2016

Gọi d là ƯCLN (2n + 1 ; 2n + 3)

=> 2n + 1 chia hết cho d

     2n + 3 chia hết cho d

=> 2n + 3 - (2n + 1) chia hết cho d

=> 2n + 3 - 2n - 1 chia hết cho d

=> 3 - 1 chia hết cho d

=> 2 chia hết cho d

=> d thuộc Ư(2) = {1 ; 2}

Mà 2n + 3 không chia hết cho 2 ; 2n + 1 không chia hết cho 2 => d = 1

=> ƯCLN (2n + 3 ; 2n + 1) = 1

Vậy 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.

30 tháng 11 2016

bai nay ?????????????????????

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

13 tháng 12 2024

Địt

25 tháng 11 2015

Đặt ƯCLN(2n+1; 2n+3) = d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\) Ư(2) = {1; 2}

Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.

Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau 

22 tháng 12 2021

Gọi (2n+1, n+1) = d (d thuộc N*)

⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d

⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d

⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d

⇒1⋮d⇒1⋮d

Mà d thuộc N*

nên d = 1

=> (2n+1, n+1) = 1

=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau  (đpcm)

14 tháng 11 2015

tich cai đe

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$

Ta có: $2n+1\vdots d; 2n-1\vdots d$

$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$

$\Rightarrow d=\left\{1;2\right\}$

Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)

$\Rightarrow d=1$

Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.