K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

20 tháng 5 2022

để x ko lá số dương cũng ko là số âm khi:

\(\dfrac{2a+5}{2}=0\\ 2a+5=0\\ 2a=-5\\ a=-\dfrac{5}{2}\)

vậy...

20 tháng 5 2022

có 3 trường hợp tất cả mà :v

a: x>0

=>2a+5<0

=>a<-5/2

b: x<0

=>2a+5>0

=>a>-5/2

c: x=0

=>2a+5=0

=>a=-5/2

22 tháng 6 2023

mik thank nhayeu

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

a. $x$ là số dương khi mà $x=\frac{3a-2}{4}>0$

$\Rightarrow 3a-2>0$

$\Rightarrow a> \frac{2}{3}$

b. 

$x$ là số âmkhi mà $x=\frac{3a-2}{4}<0$

$\Rightarrow 3a-2<0$

$\Rightarrow a< \frac{2}{3}$

c. $x$ không âm không dương

Tức là $x=\frac{3a-2}{4}=0$

Hay $a=\frac{2}{3}$

31 tháng 7 2023

a) Để \(X=\dfrac{3a-2}{4}\) là số dương

\(\Rightarrow3a-2\) lớn hơn 0 ( 4 là số dương)

\(\Rightarrow a\) lớn hơn \(\dfrac{2}{3}\)

b) Để \(X=\dfrac{3a-2}{4}\) là số âm

\(\Rightarrow3a-2\) nhỏ hơn 0 (vì 4 là số dương)

\(\Rightarrow a\) nhỏ hơn \(\dfrac{2}{3}\)

c) Để X không dương không âm

\(3a-2=0\)

\(\Rightarrow a=\dfrac{2}{3}\)