Cho khối chóp S.ABCD có đáy là hình bình hành, có thể tích bằng a3. Gọi E là trung điểm SC. Một mặt phẳng chứa AE cắt các cạnh SB và SD lần lượt tại M và N. Tìm giá trị nhỏ nhất của thể tích khối chóp S.AMEN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Giả sử S D → = m . S M → ; S B → = n . S N → .
S A → + S C → = S B → + S D →
Do A; M; N; K đồng phẳng nên m + n = 3 .
V S . A K M V S . A B C = 1 2 .1. 1 m = 1 2 m ⇒ V S . A K M V = 1 4 m
Tương tự ta có V S . A K N V = 1 4 n ⇒ V ' V = 1 4 . m + n m n = 3 4 m n ≥ 3 m + n 2 = 3 3 2 = 1 3 .
Dấu bằng xảy ra khi m = n = 1,5 .
Phương pháp:
∆ ABC có AM là trung tuyến, I là điểm bất kì trên đoạn AM, đường thẳng đi qua I cắt AB, AC lần lượt tại E, F.
Khi đó:
Cách giải:
Ta có:
Xét ∆ SAC có:
Dấu "=" xảy ra
Khi đó
Vậy V 1 V đạt giá trị nhỏ nhất bằng 1 3 khi và chỉ khi a= b = 2 3
Chọn A.
Giả sử S D → = m S M → , S B → = n S N →
Ta có S A → + S C → = S B → + S D → = 2 S I →
Vì A , M , N , P đồng phẳng nên tồn tại các số x;y sao cho A P → = x A M → + y A N →
⇔ 1 2 A S → + A C → = x A S → + S M → + y A S → + S N →
⇔ 1 2 A S → + A S → + S B → + A S → + S D → = x A S → + S M → + y A S → + S N →
⇔ 3 2 A S → + 1 2 S B → + 1 2 S D → = x + y A S → + x m S M → + y n S N →
⇔ x + y = 3 2 x m = 1 2 y n = 1 2 ⇒ m + n = 3.
Ta có: V S . A N P V S . A B C = S N S B . S P S C ⇒ V S . A N P = S N S B . S P S C . V S . A B C = S N S B . 1 2 . V 2 1
V S . A M P V S . A D C = S M S D . S P S C ⇒ V S . A M P = S M S D . S P S C . V S . A D C = S M S D . 1 2 . V 2 2
Từ (1) và (2) V 1 V 2 = 1 4 S B S B + S M S D = 1 4 1 n + 1 m ≥ 1 m + n = 1 3
Gọi G là trọng tâm tam giác S A C ⇒ M N đi qua G
V 1 V = 1 2 V S A M N V S A B D + V S M N P V S B D C = 1 2 S M S D . S N S B + S P S C . S M S D . S N S B = 3 4 x . y
V 1 V = 1 2 V S A P N V S A C B + V S A M P V S A D C = 1 2 S P S C . S N S B + S M S D . S P S C = 1 4 x + y
Với x = S N S B ; Y = S M S D
⇒ 3 x y = x + y ≥ 2 x y ⇔ 9 x 2 y 2 ≥ 4 x y ⇔ 3 4 x y ≥ 1 3
Vậy V 1 V đạt giá trị nhỏ nhất bằng 1 3
Đáp án cần chọn là D