K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

4 tháng 3 2017

= 6 cặp 

mk làm trong violympic rùi tin mk đi

4 tháng 3 2017

\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\)

\(\frac{3a+2b}{6}=\frac{a+b}{5}\)

\(5\left(3a+2b\right)=6\left(a+b\right)\)

\(15a+10b=6a+6b\)

\(9a+4b+6a+6b=6a+6b\)

\(9a+4b=0\) ( trừ cả hai vế của đẳng thức cho \(6a+6b\) )

Vì \(a\ge0;b\ge0\) ( a và b là các số tự nhiên )

\(\Rightarrow9a\ge0;4b\ge0\Rightarrow9a+4b\ge0\)

Để \(9a+4b=0\Leftrightarrow\orbr{\begin{cases}9a=0\\4b=0\end{cases}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}}\)

Vậy có 1 cặp số tự nhiên ( a;b ) là ( 0;0 )

vậy có một cặp số tự nhiên ( a;b) ( 0;0)

Câu 1: B

Câu 2: B

19 tháng 5 2015

Câu2:  
Q = \(\frac{3}{3}-\frac{3}{5}+\frac{3}{5}-\frac{3}{7}+...+\frac{3}{47}-\frac{3}{49}\)

    = \(\frac{3}{3}-\frac{3}{49}=\frac{46}{49}\)

10 tháng 3 2016

1 cặp số