K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

ta có:

A= (13+23+33+...+1003)

B= 2(13+23+33+...+1003)

Vậy B/A = 2(13+23+33+...+1003) / (13+23+33+...+1003) = 2

8 tháng 3 2016

8 ms đúng. Lấy 23:13=8 là ra (mẹo đấy bạn). Mk thi huyện vòng 15 gặp câu này ở Đỉnh núi trí tuệ mà. Kết quả chuẩn luôn

19 tháng 4 2018

A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)

A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)

A=7/10*(1/3-1/63)

A=7/10*20/63

A=2/9

13 tháng 8 2018

a)  2 + 3 3 + 4 2 + 13 2 = 196 =  14 2

b,  1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3  = 441 = 21 2  

13 tháng 9 2021

\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)

\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)

\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)

\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)

\(A=\frac{7}{10}.\frac{20}{63}\)

\(A=\frac{2}{9}\)

30 tháng 5 2018

a)  2   +   3 2   +   4 2   + 13 2 = 196 =  14 2

b)  1 3   +   2 3   +   3 3   +   4 3   +   5 3   +   6 3 = 441 =  21 2

15 tháng 9 2017

a)  2 + 3 2 + 4 2 + 13 2 = 196 = 14 2

b)  1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2

27 tháng 3 2015

huỳnh thị ngân hà, nau te, trần như tính sao ra z? 

11 tháng 3 2017

S = 13+10+23+20+33+30+...+103+100

S =  13+23+33+...+103+10.100

S = 3025+1000

S = 4025

18 tháng 10 2015

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

6 tháng 9 2019