cho n $\in$∈ N . Tìm ƯCLN và BCNN của n và n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n>2 => n-2 = b(b thuộc N)
=> BCNN(n;n+2) = 2n (2n chia hết cho n ; n + 2)
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
1)do 72=23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
2)Đặt ƯCLN(a;b)=d
Vậy a=dm ; b=dn (m>n vì a-b là số nguyên dương)
a-b=dm-dn=d.(m-n)=7=7.1=1.7
Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980
Khi đó: a=7m ; b=7n => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10
+ Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28
+Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14
Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140
Khi đó: a=1m=m ; b=1n=n =>
a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2
<=> a.b=140.1=35.4=28.5=70.2
Đó chính là các giá trị a,b thỏa mãn
cn mấy ý khác bn dựa vào tự làm nha!