cho hình thang ABCD (ab/cd) có AB =12 cm. E là trung điểm của AD, F là trung điểm của BC
a) biết EF =13cm. tính CD
b) AC cắt EF tại M. Tính EM,MF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Xét ΔADC có
E là trung điểm của AD
EM//DC
Do đó: M là trung điểm của AC
hay MA=MC
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: \(EF=\dfrac{AB+CD}{2}\)
hay CD=12cm
a ) Vì \(\hept{\begin{cases}EA=ED\left(gt\right)\\FB=FC\left(gt\right)\end{cases}}\)
\(\Rightarrow\) EF là đường trung bình của hình thang ABCD.
\(\Rightarrow\) EF // AB // CD
Xét \(\Delta ABC\) có : \(\hept{\begin{cases}BF=FC\\FK//AB\end{cases}}\)
\(\Rightarrow AK=KC\)
Xét \(\Delta ABD\) có : \(\hept{\begin{cases}AE=ED\\EI//AB\end{cases}}\)
\(\Rightarrow BI=ID\)
Vậy \(\hept{\begin{cases}AK=KC\\BI=ID\end{cases}\left(đpcm\right)}\)
b ) Vì EF là đường trung bình của hình thang ABCD.
\(\Rightarrow EF=\frac{CD+AB}{2}=\frac{10+6}{8}=2\left(cm\right)\)
Mặt khác, ta có :
* EI là đường trung bình của \(\Delta ABD\)
\(\Rightarrow EI=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
* KF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow KF=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Mà : EF = EI + IK + KF
\(\Rightarrow\) IK = EF - ( EI + KF ) = 8 - ( 3 + 3 ) = 2cm.
Vậy \(\hept{\begin{cases}EI=3cm\\KF=3cm\\IK=2cm\end{cases}}\)
Chúc bạn học tốt !!!
a: Xét ΔEAB và ΔECM có
\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)
\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)
Do đó: ΔEAB đồng dạng với ΔECM
=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)
b: Xét ΔFAB và ΔFMD có
\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)
\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)
Do đó: ΔFAB đồng dạng với ΔFMD
=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)
Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)
\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
mà MD=MC
nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)
=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
nên FE//AB
Ta có: FE//AB
AB//CD
Do đó: FE//CD
c: Xét ΔADM có HF//DM
nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)
Xét ΔBDM có FE//DM
nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
Xét ΔBMC có EG//MC
nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)
mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
và MC=MD
nên FE=EG
Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)
=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)
=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)
=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)
=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)
=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)
mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)
nên HF=FE
mà FE=EG
nên HF=FE=EG
a: CD=26-12=14(cm)