K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

a) Xét tam giác ADE và tam giác EDB có ( sai đề thì phải bạn bạn vẽ hình ra đi đáng lẽ là tam giác ABD và tam giác EBD)

BD là cạnh chung

góc ABD= góc EBD(gt) 

AB=AE( gt)

=> tam giác ABD=tam giác EBD

vậy góc A bằng góc E ( hai góc tương ứng) = 90 độ

hay nói cách khác DE vuông góc với BC

b) từ tam giác ABD = tam giác EBD (cmt)

=> AD=DE(hai cạnh tương ứng)

Xét tam giác AMD và tam giác ECD có A=E=90 độ ( góc nha)

AD=DE(cmt)

AM=EC(gt)

=> tam giác AMD= tam giác ECD(cạnh huyền cạnh góc vuông) 

=> MD=CD( hai cạnh tương ứng)

c) mk chưa làm đc tích mk đi đã rồi mk giải cho, bây giờ phải soạn anh đã 

7 tháng 3 2016

đợi mk tí nha bạn, mk làm xong nhớ k cho mk là đc

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

22 tháng 12 2021

\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))

Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)

\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)

\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)

\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)

\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)

Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng

11 tháng 7 2019

A B C D E M

a) Xét t/giác ADB và t/giác EDB

có: BD : chung

 \(\widehat{ABD}=\widehat{EBD}\) (gt)

 AB = BE (gt)

 => t/giác ADB = t/giác EDB (c.g.c)

b) Ta có: t/giác ADB = t/giác EDB (cmt)

=> \(\widehat{BAD}=\widehat{BED}\)(2 góc t/ứng)

Mà \(\widehat{BAD}=90^0\)=> \(\widehat{BED}=90^0\)

                  => DE \(\perp\)BC

c) Xét t/giác AMD và t/giác ECD

có: AM = EC (gt)

  \(\widehat{MAD}=\widehat{DEC}=90^0\)

 AD = ED (vì t/giác ADB = t/giác EDB)

=> t/giác AMD = t/giác ECD (c.g.c)

=> MD = DC (2 cạnh t/ứng)

=> \(\widehat{ADM}=\widehat{EDC}\) (2 góc t/ứng)

Ta có: \(\widehat{ADE}+\widehat{EDC}=180^0\) (kề bù)

hay : \(\widehat{ADE}+\widehat{ADM}=180^0\)

=> M, D, E thẳng hàng

Bài 2: 

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường phân giác

b: Xét ΔAEH và ΔADH có

AH chung

AE=AD

Do đó: ΔAEH=ΔADH

Suy ra: \(\widehat{AEH}=\widehat{ADH}=90^0\)

hay HE\(\perp\)AB

c: Ta có: ΔAED cân tại A

mà AK là đường phân giác

nên AK là đường cao

25 tháng 1 2017

a) xét tam giác ADE và tam giác ABC có:

                    AD = AB (gt)

                   góc A chung

              DE = BC (gt)

=> tam giác ADE = tam giác ABC (c.g.c)

b) dựa vào tam giác vuông đó bn

câu a) ko chắc!!!

ý lộn nhé góc BAC = góc DAC = 90(đối đỉnh) chứ ko phải góc A chung đâu

76588987690