K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

\(\frac{8}{9}=\frac{8x2009}{9x2009}=\frac{16072}{9x2009}\)

\(\frac{2008}{2009}=\frac{2008x9}{2009x9}=18072\)

vì 16072<18072 suy ra \(\frac{8}{9}<\frac{2008}{2009}\)

7 tháng 3 2016

so sánh 8/9 và 2008/2009

=> cách tính nhanh

ta lấy tử của 8/9 là:8 x2009=16072

ta lấy tử của 2008/2009là:2008x9=18072

=> 16072 là của 8/9

=> 18072 là của 2008/2009

mà 16072<18072

=>8/9<2008/2009

8 tháng 7 2017

Ta có:
\(\frac{2009^{2008+1}}{2009^{2009+1}}=\frac{2009^{2009}}{2009^{2010}}=\frac{1}{2009}\)

\(\frac{2009^{2008+5}}{2009^{2009+9}}=\frac{2009^{2013}}{2009^{2018}}=\frac{1}{2009^5}\)

=>Đẳng thức trên lớn hơn đẳng thức dứi(vì 2009<2009^5)

Vậy.......

20 tháng 4 2017

Nếu a = 1 = > A = B

Nếu a > 1 => A < B

14 tháng 7 2016

\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)\(=\)\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)

k mk nha!!! *o~

14 tháng 7 2016

\(\frac{2007}{2008}+\frac{2008}{2009}=\frac{2007}{2008}+\frac{2008}{2009}\)

nha                                                        ^_^

Nguyễn Vân Anh
20 tháng 7 2017

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)

Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)

21 tháng 7 2017

Cảm ơn bạn CTV 

11 tháng 6 2020

Ta có:4=1+1+1+1=\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)

\(\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)

Xét \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)

\(=\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)

xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)

\(\Rightarrow4< A\)

12 tháng 6 2020

bạn chắc chắn là đúng chứ