Khi chia đa thức f(x)=(x2+x-1)10+(x2-x+1)10 cho đa thức g(x)=x2-x ta được số dư là...
Giúp mình nhé cảm ơn các bạn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M(1)=3
M(-2)=2
=>a+b=3 và -2a+b=2
=>a=1/3 và b=8/3
b: G(-1)=F(2)
=>(a+1)*(-1)^2-3=5*2+7a
=>a+1-3-10-7a=0
=>-6a-12=0
=>a=-2
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Dư trong phép chia cho \(x^2-x=x\left(x-1\right)\) là hằng số.
Gọi thương của phép chia là \(Q\left(x\right)\) và dư là \(r\), với mọi \(x\) ta có:
\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}=\left(x^2-x\right).Q\left(x\right)+\left(ax+b\right)\)
Với \(x=0\) thì \(f\left(0\right)=\left(0^2+0-1\right)^{10}+\left(0^2-0+1\right)^{10}=\left(0^2-0\right).Q\left(0\right)+r\)
Khi đó, \(2=r\)
Với \(x=1\) thì \(f\left(1\right)=\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}=\left(1^2-1\right).Q\left(1\right)+r\)
Do đó, \(2=r\)
Vậy, số dư của phép chia là \(2\)
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)