Cho S=3/10+3/11+3/12+3/13+3/140.Không tính tổng S , hãy chứng tỏ tổng S không phải là một số tự nhiên .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S < 3/10 + 3/10 + 3/10 + 3/10 + 3/10
=> S < 15/10 < 20/10 = 2
=> S > 15/14 > 1
=> 1 < S < 2
=> S không phải là số tự nhiên
có 3/10>3/14
3/11>3/14
3/12>3/14
3/13>3/14
3/14=3/14
=> 3/10+3/11+3/12+3/13+3/14>3/14+3/14+3/14+3/14+3/14
=>S>3/14 . 5
=S> 15/14
mà 15/14>1
=>S>1
Có 3/10=3/10
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
=>3/10+3/11+3/12+3/13+3/14<3/10+3/10+3/10+3/10+3/10
=>S<3/10 . 5
=> S<3/2
vì 3/2<2
=>S<2
=>1<S<2
mà giữa 1 và 2 ko có số tự nhiên nào
=> S ko phải số tự nhiên
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
cho s = 3/10+3/11+3/12+3/13+3/14. chứng minh rằng : 1<s<2 . từ đó suy ra s không phải là số tự nhiên
giải\(s>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(s<\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)
vậy 1<s<2
=>s không thuộc N
giải: s>\(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
s<\(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)
vậy 1<s<2
=> s không phải là N
có 3/10>3/15
3/11>3/15
3/12>3/15
3/13>3/15
3/14>3/15
có S=3/10+3/11+3/12+3/13+3/14
có S>3/15+3/15+3/15+3/15+3/15=1
=> S>1
có 3/10=3/10
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
<=> S<3/10+3/10+3/10+3/10+3/10=2
có 1 <S<2
=>S ko phải là số tự nhiên