Có bao nhiêu số nguyên m thõa mãn: phương trình \(x^2-2mx+5m+6=0\) vô nghiệm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)
=> Pt luôn có hai nghiệm pb
Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)
Có \(x_1^2+2mx_2-8m+5=0\)
\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)
\(\Leftrightarrow2m.2m-12m+9=0\)
\(\Leftrightarrow\left(2m-3\right)^2=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy...
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)
\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)
\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)
\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).
Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).
Vậy m = -2.
\(\Leftrightarrow4m^2-20m-24>=0\)
\(\Leftrightarrow\left(m-6\right)\left(m+1\right)>=0\)
=>Có vô số số nguyên m thỏa mãn