K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

a: Xét ΔBAD và ΔCAD có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

17 tháng 1 2016

tick đi rôì giải cho

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

22 tháng 11 2021

a) Xét △ABD và △EBD có:

ˆBAD=ˆBED=90oBAD^=BED^=90o

BD: cạnh chung

ˆABD=ˆEBDABD^=EBD^

⇒△ABD = △EBD (cạnh huyền - góc nhọn)⇒△ABD = △EBD (cạnh huyền - góc nhọn)

b) △ABD = △EBD

⇒BA=BE⇒BA=BE (2 cạnh tương ứng)

Xét △ABE có: ˆB=60oB^=60o; BA = BE

⇒⇒ △ABE đều

c) Xét △ABC vuông tại A có: ˆABC+ˆC=90oABC^+C^=90o(định lí tổng 3 góc của 1 tam giác vuông)

⇒60o+ˆC=90o⇒ˆC=30o⇒60o+C^=90o⇒C^=30o

Xét △ABC vuông tại A có: ˆC=30oC^=30o

⇒AB=12BC⇒AB=12BC

⇒BC=5.2=10(cm)

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

23 tháng 12 2017

A B C D I K

a)Xét tam giác ABD và tam giác ACD có:

AB=AC (gt)

BD=DC (vì D là trung điểm của BC)

AD là cạnh chung

=>tam giác ABD =tam giác ACD (c.c.c)

b)Xét tam giác BID và tam giác CID có:

BD=DC (vì D là trung điểm của BC)

ADB=ADC=90 độ (vì D là trung điểm của BC)

ID là cạnh chung

=>tam giác BID=tam giác CID (c.g.c)

=>BI=IC (2 cạnh tương ứng)

c) Câu c mình không hiểu đề cho lắm ý bạn là góc BAC=2 làn góc IBC

23 tháng 12 2017

a. Ta có AB = AC ( gt) 

=> Tam giác ABC cân tại A

Nối AD ta được đường trung trực AD 

=> AD cũng là đường cao ( tính chất của tam giác cân)

Vì tam giác ABC cân nên góc BAD = góc CAD 

Xét tam giác ABD và tam giác ACD có:

AD chung

góc BAD = góc CAD (cmt)

AB=AC (gt)

=> tam giac ABD = tam giác ACD ( c.g.c)

b. Xét tam giác BID và tam giác CID có:

ID chung 

BD =DC ( gt)

góc IDB = góc IDC = 900

=> tam giác BID= tam giác CID ( 2 cạnh góc vuông)

=> IB =IC ( 2 cạnh tương ứng )

c. chưa nghĩ ra :))

a: XétΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Xét ΔBME vuông tại E và ΔBCA vuông tại A có 

BE=BA

\(\widehat{MBE}\) chung

Do đó: ΔBME=ΔBCA

Suy ra: \(\widehat{BME}=\widehat{BCA}\) và ME=CA

 

a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD