tìm a,b,c biết : a!+b!+c!=abc biết abc là số tự nhiên có 3 chữ số(abc có gạch trên đầu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 260 000 + abc = 62 x abc
260 000 = 62 x abc - abc = 61 x abc
=> abc = 260 000 : 61
=> Không có chữ số a,b,c cần tìm
b) abc x 10 + 8 = 2 x (1000 + abc)
abc x 10 + 8 = 2000 + 2 x abc
=> abc x 10 - 2 x abc = 2000 - 8
=> 8 x abc = 1992
=> abc = 1992 : 8 = 249
a) 260 000 + abc = 62 x abc
260 000 = 62 x abc - abc = 61 x abc
=> abc = 260 000 : 61
=> Không có chữ số a,b,c cần tìm
b) abc x 10 + 8 = 2 x (1000 + abc)
abc x 10 + 8 = 2000 + 2 x abc
=> abc x 10 - 2 x abc = 2000 - 8
=> 8 x abc = 1992
=> abc = 1992 : 8 = 249
mik copy nha
a/
Gọi số có 2 chữ số là ab. Khi viết thêm vào giữa ta được aabb
Theo đề bài aabb : ab = 99 hay ab x 99 = aabb hay ab x100 – ab = aabb
Ta có phép tính
__ ab00
___ab___
aabb
b=0 hoặc b=5
Nếu b=0 thì a000 – a0 = aa00 (sai)
Nếu b=5 thì
__ a500
__a5___
aa55
a=4
Số đó là: 45
b/
206abc : 501=abc
=> (206000 + abc):501 = abc
=>(206000 + abc):abc = 501
=> 206000:abc + 1 = 501
=> 206000 : abc = 500
=> abc = 206000 : 500 = 412
a/
Gọi số có 2 chữ số là ab. Khi viết thêm vào giữa ta được aabb
Theo đề bài aabb : ab = 99 hay ab x 99 = aabb hay ab x100 – ab = aabb
Ta có phép tính
__ ab00
___ab___
aabb
b=0 hoặc b=5
Nếu b=0 thì a000 – a0 = aa00 (sai)
Nếu b=5 thì
__ a500
__a5___
aa55
a=4
Số đó là: 45
b/
206abc : 501=abc
=> (206000 + abc):501 = abc
=>(206000 + abc):abc = 501
=> 206000:abc + 1 = 501
=> 206000 : abc = 500
=> abc = 206000 : 500 = 412
2. ta có a+b=3(a-b) => a+b=3a-3b
=> 3b+b=3a-a => 4b=2a
=> \(\frac{a}{b}\)= \(\frac{4}{2}\)=2
3.a.bcd.abc=abcabc
=>a.bcd.abc=abc.1001
=> a.bcd=1001
Trong các số tự nhiên có 1 chữ số chỉ có 1 và 7 là các ước của 1001
Xét a=1 => bcd=1001(loại)
Xét a=7 => bcd=143 (thỏa mãn)
Vậy a=7, b=1, c=4 và d=3.
Vì abc<1000
=>a<7
=>abc<700
=> 1<=a,b,c<=5
Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5
Thật vậy: Giả sử cả 3 số a,b,c<=4
=>abc<=72<100 vô lí
Do đó a=5 hoặc b=5 hoặc c=5
*Nếu a=5
Ta có
500+bc=5!+b!+c!<=240+b!
=>b!+240>500
=>b!>260
=>b>5 vô lí
Nên a<=4
*Nếu b=5
Lập luận tương tự b<=4
*Nếu c=5
Tìm được a=1;b=4
Vậy…
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6