cho B= x+2/4
tìm x khi B<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x\(\le\)31 (\(\forall\)x)
và x\(\notin\left\{-4,4\right\}\) thì B<0
Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)
\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)
\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)
\(S=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{d^2+1}\)
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
\(tương\) \(tự\) \(với:\dfrac{1}{b^2+1};\dfrac{1}{c^2+1};\dfrac{1}{d^2+1}\)
\(\Rightarrow S\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}+1-\dfrac{d}{2}=4-\left(\dfrac{a+b+c+d}{2}\right)=4-\dfrac{4}{2}=2\)
\(\Rightarrow min_S=2\Leftrightarrow a=b=c=d=1\)
a/ \(\dfrac{x-7}{2}< 0\Rightarrow x-7< 0\Rightarrow x< 7\)
Vậy........
b/ \(\dfrac{x+3}{x+5}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3< 0\\x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3>0\\x+5< 0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -3\\x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x>-3\\x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< -3\)
Vậy........
\(\Rightarrow\dfrac{x+2}{4}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)