K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

1, p = 3

2 ,p = 5

17 tháng 12 2021

Nếu p = 2 = p + 2 = 4 ( loại )

Nếu p =3 = p + 6 = 9 ( loại )

Nếu p =5 = p + 2= 7 , p + 6 = 11 , p + 8 = 13 , p + 12 = 17 , p + 14 = 19 ( thỏa mãn )

Nếu p > 5 , ta có vì p là số nguyên tố nên p không chia hết cho 5 = p = 5k + 1 ,p = 5k + 2 , p = 5k + 3 , p = 5k+4

Với p = 5k + 1 ta có p +14 = 5k + 15 = 5 ( k + 3 ) không chia hết cho 5 ( loại )

Với p = 5k + 2 , ta có p + 8 = 5k + 10 ( k + 2 ) không chia hết cho 5 ( loại )

Với p= 5k + 3 , ta có p + 12 = 5k + 15 = 5 (k + 3 ) khồn chia hết 5 ( loaik )

Với p = 5k + 4 , ta có p + 6 = 5k + 10 = 5 ( k + 2 ) không chia hết cho 5 ( loại )

Không cos giá trị nào p = 5

p =5

25 tháng 12 2021

Gọi d là \(ƯCLN\left(3n+2,2n+1\right)\)

Ta có : 2n+ 1 chia hết cho d ,3n+2 chia hết cho d

\(3\left(2n+1\right)-2\left(3n+2\right)\)chia hết cho

1 chia hết cho d

\(d=1\)

Vậy \(3n+2;2n+1\)là số nguyên tố cùng nhau với mọi số tự nhiên n

TL

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

HỌC TỐT Ạ

27 tháng 12 2021

a=3 phải ko

25 tháng 2 2021

Thử `p=2`

`=>p+2=4(HS)`

`=>p=2`(loại).

Thử `p=3`

`=>p+12=15(HS)`

`=>p=3`(loại).

Thử `p=5`

`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}

`=>p=5(TM)`

Nếu `p>5` mà p là SNT

`=>p cancel{vdost} 5`

`=>p=5k+1,5k+2,5k+3,5k+4`

`+)p=5k+1=>p+14=5k+15 vdots 5`

`=>p=5k+1` (loại).

`+)p=5k+2=>p+8=5k+10 vdots 5`

`=>p=5k+2` (loại).

`+)p=5k+3=>p+12=5k+15 vdots 5`

`=>p=5k+3` (loại).

`+)p=5k+4=>p+6=5k+10 vdots 5`

`=>p=5k+4` (loại).

Vậy `p=5`

25 tháng 2 2021

Ôi trời ghi nhầm thực ra là p không chia hết cho 5

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !

1 tháng 11 2015

a) +) p = 2 => p + 2 = 4 không là số nguyên tố => Loại

+)  p = 3 => p+ 2 = 5; p + 10 = 13 là số nguyên tố (chọn)

+) p > 3:

Nếu p =3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 => Loại

Nếu p = 3k + 2 thì p + 10 = 3k + 12 chia hết cho 3 => Loại

Vậy p = 3

b) tương tự câu a)

c)

+) p = 2 => p + 2 = 4 là hợp số => Loại

+) p = 3 => p + 6 = 9 là hợp số => Loại

+) p = 5 => p + 2 = 7; p+ 6 = 11; p + 8 = 13; p+ 12 = 17; p + 14 = 19 (Chọn)

+) p > 5:

Tương tự xét các trường hợp  p = 5k + 1; 5k + 2; 5k + 3; 5k + 4 (loại)

Vậy p = 5

1 tháng 11 2015

a) p = 3

b) p = 3

c) p = 5.

tich nha các bạn

1 tháng 11 2015

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

1 tháng 11 2015

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

Câu b:

undefined

Đến đoạn này cũng xét như câu a

Câu c:

undefined